Long-term immunity induced by hepatitis A vaccines: an update

Koen Van Herck, MD, PhD
Centre for the Evaluation of Vaccination
Vaccine & Infectious Disease Institute
University of Antwerp, Belgium
Outline of the talk

• Observed anti-HAV antibody persistence
 - in adults
 - in children
• Model-based predictions
 - (log)linear extrapolation
 - linear mixed model
• From antibody persistence to persistence of protection
• Unsolved issues
Antibody persistence

- Anti-HAV persistence ≥ cut-off level
 - Different cut-off levels (10, 15, 20, 33 IU/L)
- Many years after completion of vaccination schedule
 - very few subjects lose their antibodies
 - children: up to 11 years
 - adults: up to 15 years, and still ongoing (Y16-Y20)
 - also in unselected populations (Rendi-Wagner et al.)
 - >1000 fully vaccinated travellers
 - blood sample ±10 years later
 - 98% still had anti-HAV >10 IU/L

Outline of the talk

• Observed anti-HAV antibody persistence
 - in adults
 - in children
• Model-based predictions
 - (log)linear extrapolation
 - linear mixed model
• From antibody persistence to persistence of protection
• Unsolved issues
AB persistence: hepatitis A
Linear extrapolation (1994-2001)

Model-based predictions

- Log-linear extrapolation method (average persistence)
 - children: 14-25 years
 - adults: 20-25 years (and beyond)
Outline of the talk

• Observed anti-HAV antibody persistence
 - in adults
 - in children
• Model-based predictions
 - (log)linear extrapolation
 - linear mixed models
• From antibody persistence to persistence of protection
• Unsolved issues
Estimation Period

STEP 1:
Modeling the change in antibody level in the estimation period
Results

- **Input data**
 - antibody level before second vaccine dose
 - body mass index (BMI)

- **Model fits the data well**
 - at population level
 - at individual level
Long-Term Predictions

STEP 2:
Long term prediction
First Step: Validation of the model

- **Validation of the model**

ESTIMATION PERIOD

PREDICTION PERIOD

Prediction based on the first 6 years

New observation (e.g., year 7)

Correlation between the predicted value at 7 years (based on 6 years data) and the observed value.
HAV123 (0-6): correlation

$\mathbf{r = 0.96}$
HAV112 (0-12): correlation

All but 3 seronegative subjects: $r = 0.97$

All subjects: $r = 0.81$
Results

• Input data
 • antibody level before second vaccine dose
 • body mass index (BMI)

• Model fits the data well
 • at population level
 • at individual level

• High correlation with observations
 • at population level
 • at individual level
2004: Model validation

- Using data up to year 6 (like in 2000)
 - Different models
 - Model 2000 (fractional polynomial with covariates)
 - Model 2000 without covariates
 - Linear trend with changepoint (like Bovier et al.)
 - Predicting data year 7-10
 - Results:
 - excellent correlation (~0.90)
 - slightly ↓ with time
Mean Structure (1): linear model with a change point

For $t_j < T$:

$$Y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i}) t_j + \varepsilon_{ij}$$

For $t_j \geq T$:

$$Y_{ij} = (\beta_0 + \alpha_0 + b_{0i}) + (\beta_1 + \alpha_1 + b_{1i}) t_j + \varepsilon_{ij}$$

- We allow for a change in linear trend.

Evolution of the mean

![Graph showing the evolution of the mean with a change point at T](image)
Second Step: Long-Term Predictions

HAV-123

estimation period prediction period

Linear Model
Loess (est. period)

MONTH 120
MONTH 360
Hepatitis A: Linear mixed model
Long-term estimates

- Individual predictions after 25 years (2000)
 - anti-HAV before 2nd dose % neg. at Y25
 - < 20 IU/L < 12 %
 - 20-100 IU/L < 8 %
 - 100-1000 IU/L < 2 %
 - > 1000 IU/L < 1 %
 - overall < 5 %

- Confirmed in 2004 (including Y6-Y10 data)
 - consistent results with 3 different models

- Similar results with other vaccines

Bovier 2002; Bovier (CISTM) 2005; Pigeon 1999; Van Herck (ISVHLD) 2000, 2004
Outline of the talk

• Observed anti-HAV antibody persistence
 - in adults
 - in children
• Model-based predictions
 - (log)linear extrapolation
 - linear mixed models
• From antibody persistence to persistence of protection
• Unsolved issues
Long-lasting protection

• Minimal protective level?
 - not clearly defined
 • Studies in chimpanzees with passive immunisation
 - 10 IU/L: prevent viral shedding (but not infection)
 • Vaccine trials: different (in-house) ELISA tests
 - 10, 15, 20, 33 IU/L?
 - comparability of results?
 - Defining “protection”
 - Merriam-Webster: “the state of being protected”
 » 1 a : to cover or shield from exposure, injury, damage, or destruction
 - Shielded from exposure?
 - Shielded from “injury”?

Purcell, Vaccine 1992
Long-lasting protection

- Beyond persistence of antibodies
 - Direct evidence
 - Chimpanzees
 - Challenged with HAV after vaccination
 » Protected, even without anti-HAV antibodies
 » Antibodies are not an absolute requirement for protective immunity
 - Humans
 - In vitro tests for cellular-mediated immunity (EliSpot)
 » memory B-cells producing IgG anti-HAV 2-3 years post-vaccination
 » T-cell immune memory: up to 6 years post-vaccination

Chen 1996; Lemon 1993; Leroux-Roels 2000; Purcell 1992
Indirect evidence: booster study

- 12 years since Havrix 720 (0-1-6)
- Cohort (N=150) followed for 10 years
- Booster study: n=31
- Booster: Havrix 720
- Anamnestic response
 - titre at least x2 (or x4 if <100 IU/L at day 0)
- Day 0: 100% seropositive
- Fast, strong response within 2 weeks

Van Herck 2004
follow-up Month 145

- GMT 242 IU/L
- GMT 877 IU/L
- GMT 3831 IU/L
- GMT 5282 IU/L
Outline of the talk

• Observed anti-HAV antibody persistence
 - in adults
 - in children
• Model-based predictions
 - (log)linear extrapolation
 - linear mixed models
• From antibody persistence to persistence of protection
• Unsolved issues
Unsolved issues (1)

• Observed anti-HAV persistence >15 years
 • follow-up Y16-Y20 started 11/2008

• Validation of model-based predictions
 • using Y11-Y15 follow-up data
 • like before OR restart model fitting from scratch?

• Mathematical modelling (Fraser 2007 – HPV)
 - modified power-law model
 • estimating the proportion of memory cells induced
 • applicable to other vaccines / infectious diseases?
 • similar fit as statistical modelling?
Unsolved issues (2)

• Extrapolation to other populations
 • other hepatitis A vaccines
 • vaccinated children and adolescents
 • vaccinated infants (effect of MATABs?)

• Duration of protection
 • boostability in absence of anti-HAV
 - pre-booster cellular-mediated immunity
 - immune response to booster dose
 » humoral
 » cellular
 • after single dose
After single dose: how long protected?

- Insufficient data, BUT good indications
 - Delayed second dose (up to 5-8 years)
 - Excellent anamnestic response to second dose
 - Not affected by the delay
 - Even after losing detectable antibodies
 - Single dose of live vaccine
 - Long-term persistence of antibodies and long-term effectiveness

- CAVE:
 - on the long run?
 - if vaccinated at young age?
 - in conditions of low endemicity?
 - no natural boosters

Hepatitis A

Delayed second dose

<table>
<thead>
<tr>
<th>Number (n)</th>
<th>Time of delay (month)</th>
<th>GMT before (IU/L)</th>
<th>GMT after (IU/L)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>24–66</td>
<td>116</td>
<td>3342</td>
<td>Landry 2000</td>
</tr>
<tr>
<td>25</td>
<td>48–72°</td>
<td>32</td>
<td>2993</td>
<td>Iwarson 2002</td>
</tr>
<tr>
<td>156</td>
<td>20–31</td>
<td>66</td>
<td>1544</td>
<td>Williams 2003</td>
</tr>
<tr>
<td>97</td>
<td>18-54*</td>
<td>39-50</td>
<td>2385</td>
<td>Beck 2003</td>
</tr>
</tbody>
</table>

*°JTM 2004: up to 8 years
*CISTM_2007 poster: 8-11 years