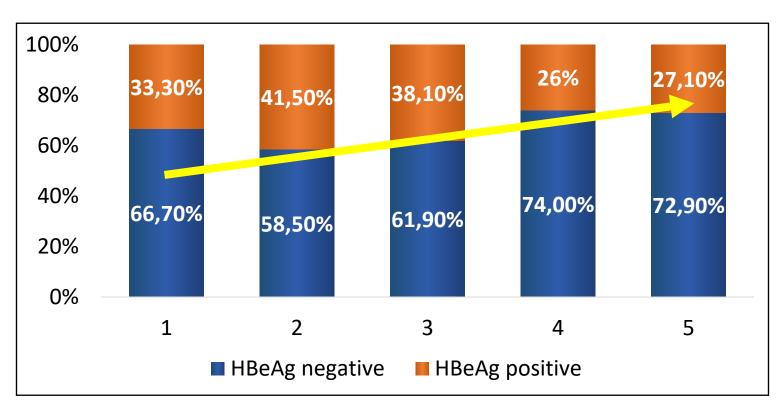
Treatment discontinuation: Asian perspective

Rachel Wen-Juei Jeng
Chang Gung Memorial Hospital, Linkou Medical Center, Taiwan
March 30, 2022

The global and regional burden of CHB

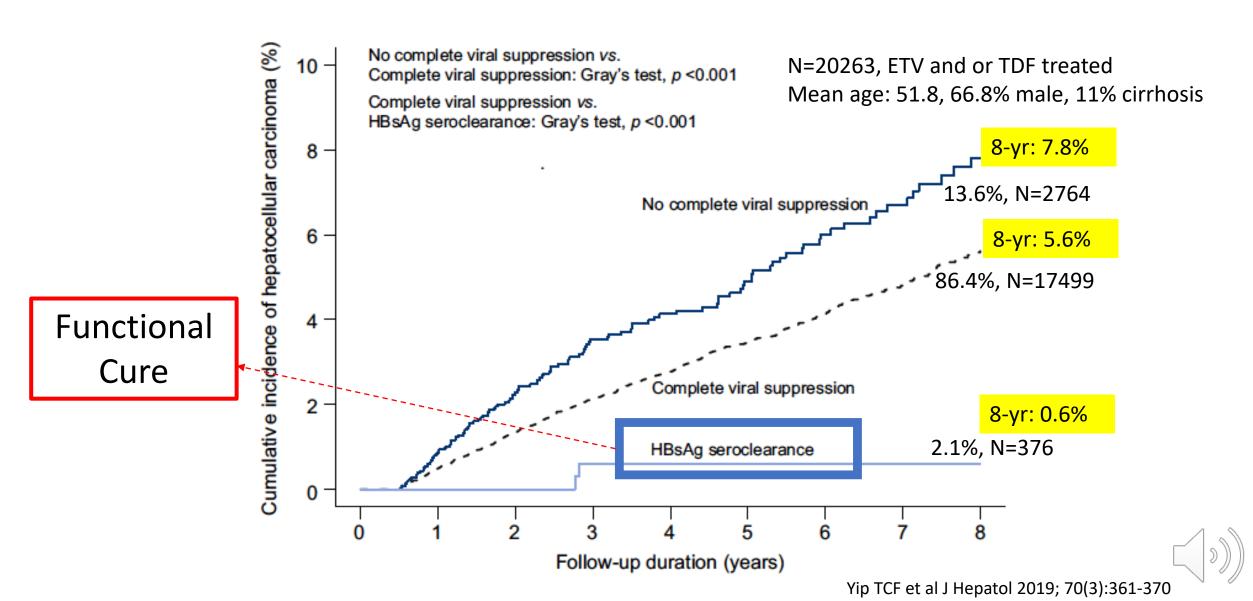
An estimated 296 million subjects chronically infected and 820,000 deaths worldwide by 2019

July 1st 1986 -- nation-wide neonatal HBV vaccination program:


HBV prevalence: decrease from 20% to 7%, with only 0.8% among people younger than 35.

Still, there are 1.9 million CHB patients in Taiwan

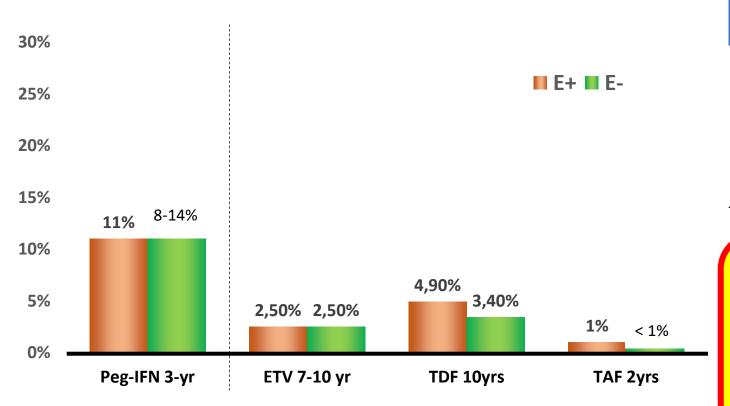
The changing phenotype of the CHB patients More and more HBeAg negative CHB!


Increased HBeAg negative proportion of treatment-naïve CHB in CGMH

Current guideline treatment endpoint:

	Endpoint for HBeAg-Neg CHB
AASLD 2018	HBsAg loss
EASL 2017	HBsAg loss, finite for selected patients (> 3-year undetectable HBV DNA)
APASL 2016	HBsAg loss or finite for patients > 2-year undetectable HBV DNA

HBsAg loss: the ultimate goal


Why Finite therapy should be considered...

- Willingness/adherence/loss to follow-up in real world
- Long term drug safety > 10 years
- Low HBsAg loss rate during NA treatment
- Cost for life-long, esp. HBV endemic countries
 - (~2200 USD annually per patient, ~2,000,000 CHB patients in Taiwan*)

*estimated in 2018

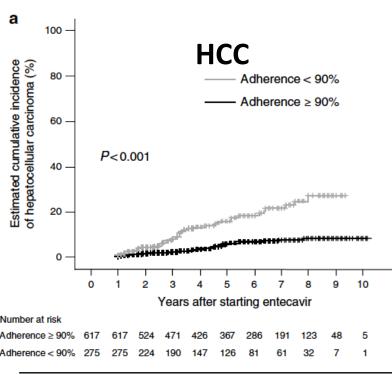
Functional cure is difficult to reach

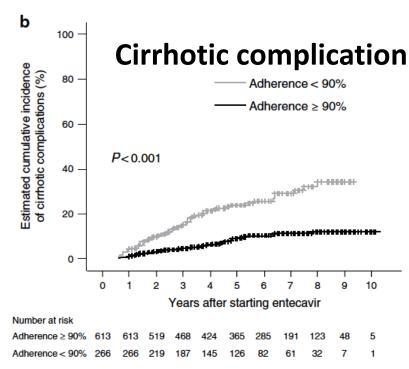
HBsAg loss rate by current antiviral treatment

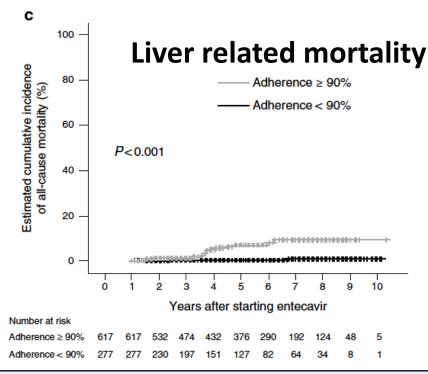
HBsAg loss rate	No.	Genotype
0.15% per year	1075	B/C ¹
0.33% per year	5409	C^2
0.3% by 7 year	375	D^3

An average HBsAg decline of 0.084 log₁₀IU/mL/yr, estimated time of HBsAg loss: 39-610 years!^{4, 5}

^{1.} Jeng WJ et al Hepatology 2018; 68(2):425-434 2. Kim GA et al Gut 2014; 3. Buti M Dig Dis Sci 2015;; 60(5):1457-64; 4 Chevaliez S et al J Hepatol 2013; 58(4): 676-83; 5. Hsu VC et al J Infect Dis. 2021 Dec 1;224(11):1890-1899

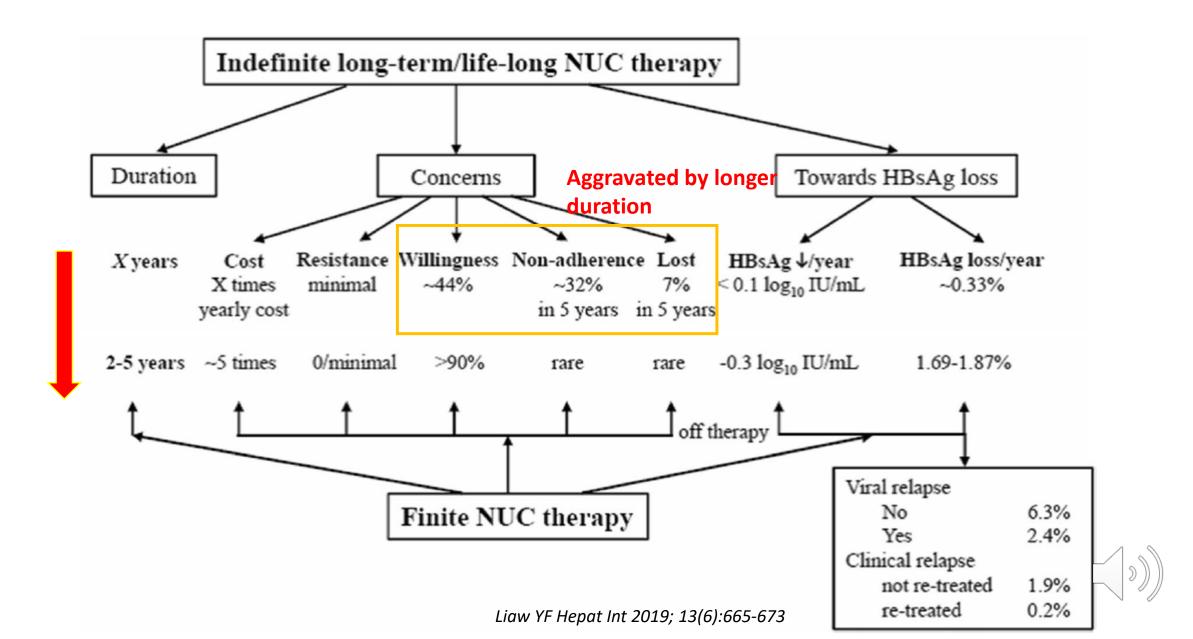

Problem raised during long-term treatment


Human nature: Almost inevitable

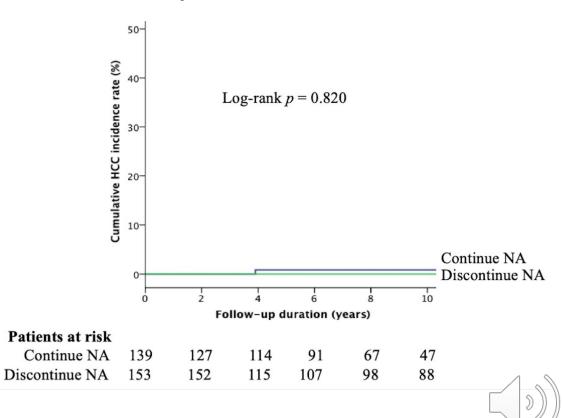

- Adherence rate by meta-analysis: **74.6%**¹ (Optimal: 95%)
 - Comparable between high and low income
 - Barriers: forgetting, limited understanding of the importance of adherence, change to routine
- Liver adverse events hazard ratio increase when adherence < 90%, greater in those
 < 70%² (forgot 2 times per week)
 - HR: 3.9 for HCC, 4.1 for cirrhotic complication, 22.7 for liver related mortality
- Real-world on-treatment lost follow-up cumulative rate
 - Prospective, call-back system ³ (N=147): Cumulative 1^{st:} 3%, 3rd: 6%, 5th: 8%, 6th: 13%
 - Retrospective, cirrhotic³ (N=1066): 1st: Cumulative 1st: 6%, 3rd: 8%, 5th: 10%, 6th: 11%
- Lost to f/u without monitoring may lead to severe flare or hepatic failure^{4.}

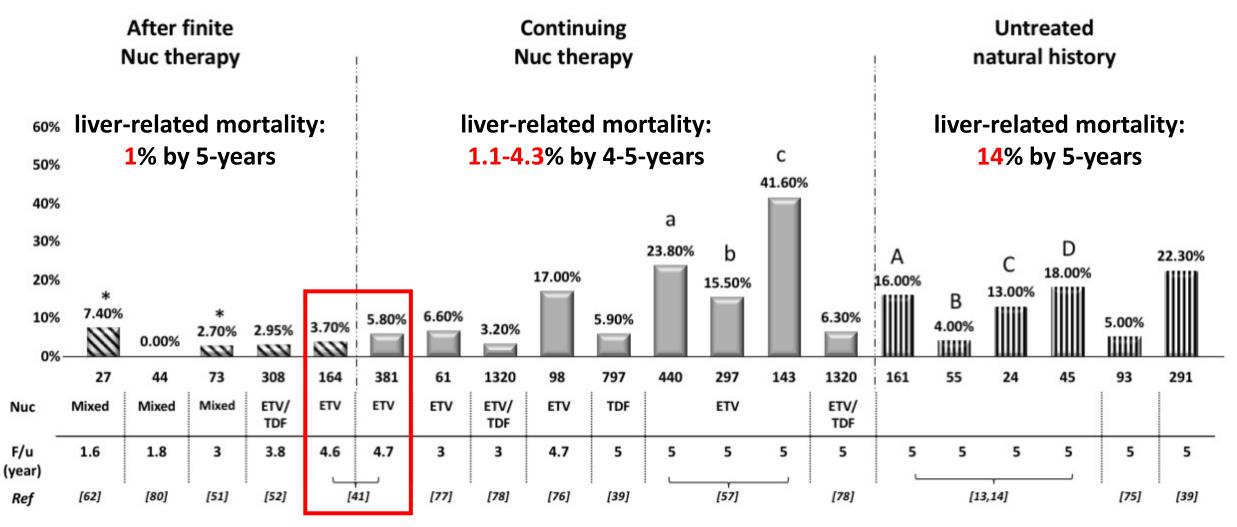
Poor adherence leads to poor outcome

894 treatment naïve CHB receiving ETV, 10-year longitudinal observational study, overall mean adherence rate: 89%¹



	НСС		(Cirrhotic complication			Liver related mortality		
Adherence (%)	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value
≥ 90	1			1			1		
70-90	2.33	1.32-4.1	0.003	2.04	1.26-3.31	0.004	7.55	1.58-6.11	0.011
< 70	3.9	2.15-7.07	<0.001	4.08	2.56-6.53	<0.001	22.67	5.6-91.7	<0.0

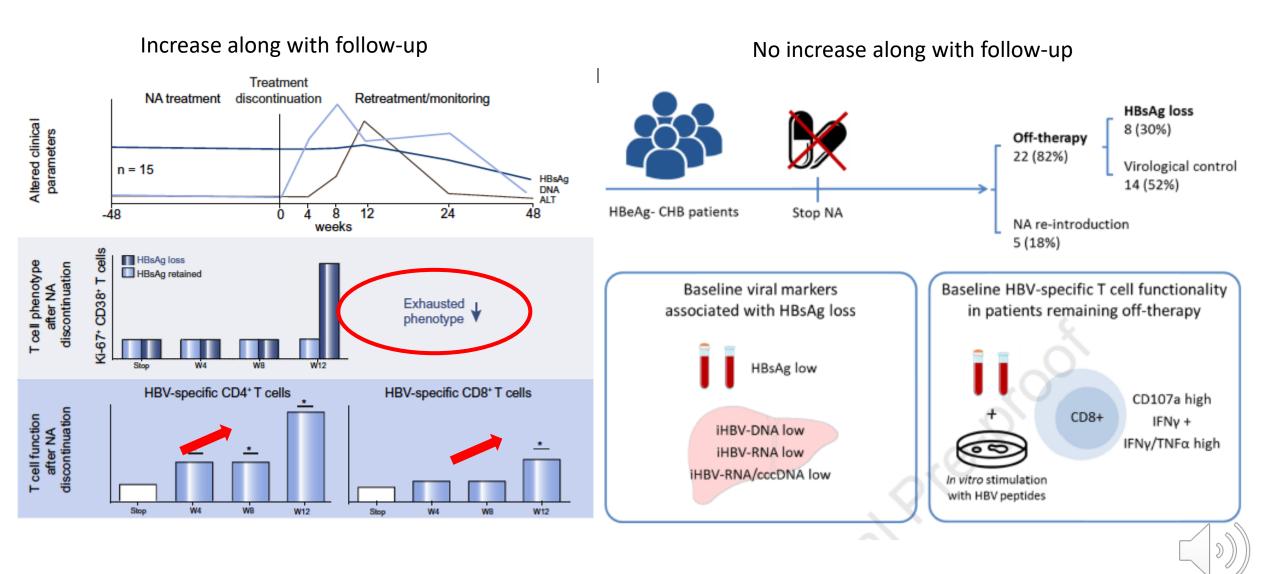

A shifting paradigm for HBeAg (-) treatment endpoint


No increase HCC events in finite therapy among HBeAg negative CHB patients

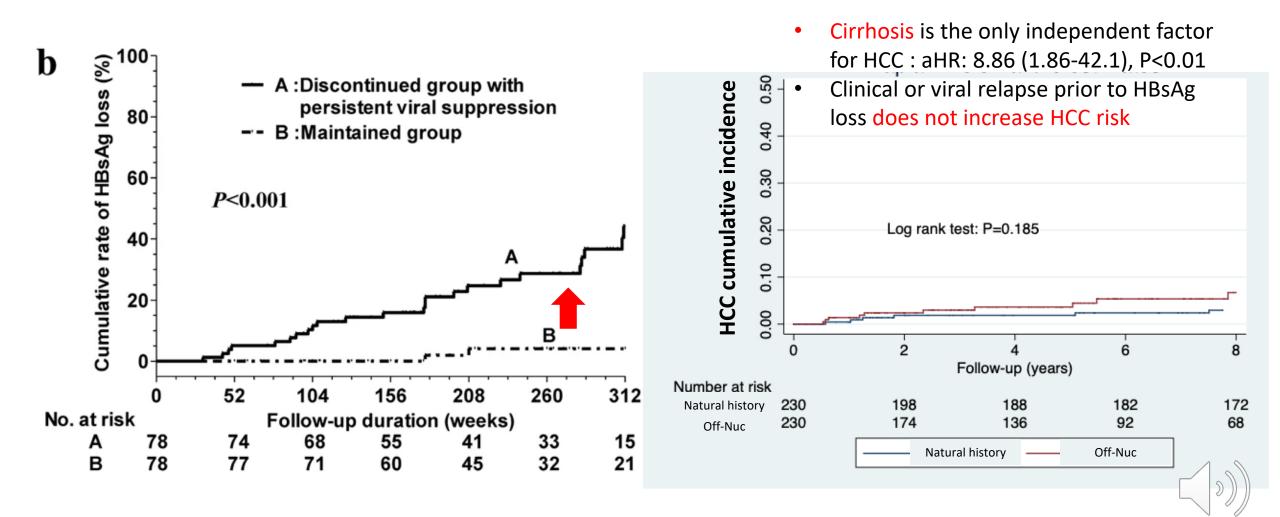
- The HCC incidence were comparable between finite arm and continued arm in both non-cirrhotic^{1,2} and cirrhotic^{3,4} CHB patients
 - Non-cirrhotic:
 - 5-year: Finite vs. Continued¹.:
 - Overall: 2.0% vs. 4.2%, P=0.494
 - Taiwan (NTUH): 1.3% vs. 2.2%,
 P=0.873
 - Cirrohotic:
 - 5-year: Finite vs. Continued
 - LK-CGMH: 7.5% vs. 12.5%, P=0.182
 - KH-CGMH: Comparable, P=0.77

Coninue vs. disconinue NA: 3-,5-,10-years = 0%, 1%, 1% vs. 0%, 0%, 0%

Hepatic decompensation in cirrhotic patients: not higher

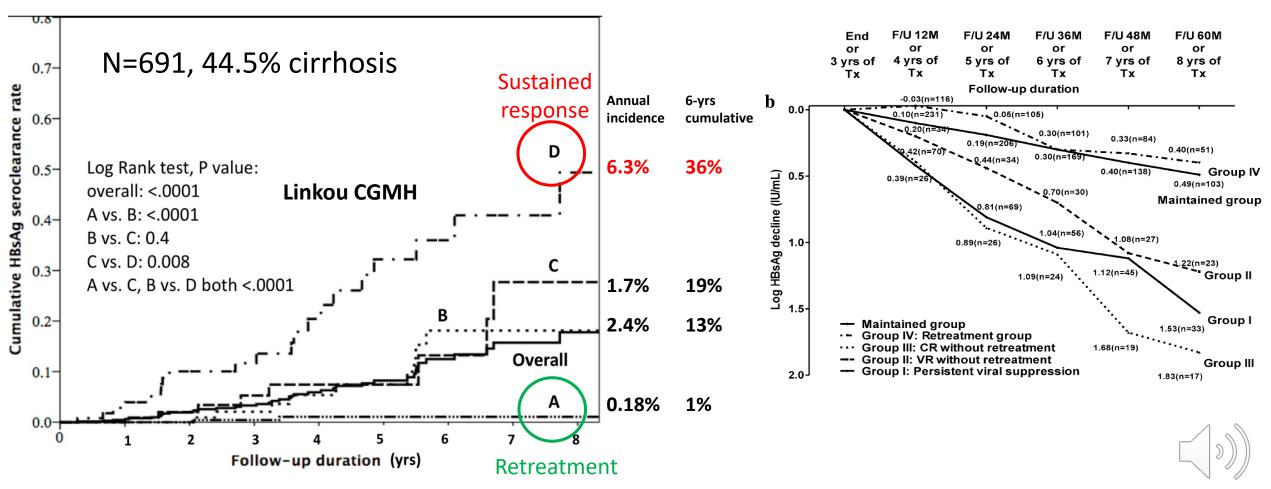

a=overall, b: adherence>90%; c: <90% A: overall; B: HBeAg(-)/DNA(-); C: HBeAg(-)/DNA(+); D: HBeAg(+)

HBsAg loss increased in patients off-Nuc


HBsAg loss in ETV or TDF treated Pts: 2.6-4% by 10 years

Source	Design	Ethnics	Nuc	No.	Tx (yr)	F/U (mo)	HBsAg loss
Berg	RCT	Caucasian (88%)	TDF	21	>4	33	30% /3 yrs
van Bommel	RCT	Caucasian (80%)	Mixed	79	>4	24	10.3% /2yrs
Hadziyannis	Pro/Cohort	Caucasian	ADV	33	4-5	66	39% /5 yrs
Manolakopoulos	Pro/Cohort	Caucasian	ETV/TDF	57	7.5	65	20% /3 yrs
Garcia-Lopez	Pro/Cohort	Caucasian (93%)	ETV/TDF	27	8	34	30% /3 yrs
Chan	Cohort	Asian (100%)	LAM	53	3	71	23% /5 yrs
Chi	Cohort	Asian (80%)	Mixed	59	5	19.4	14% /3 yrs
Chen	Cohort	Asian (100%)	ETV	250	3.2	>60	20.8% /6 yrs
Jeng	Cohort	Asian (100%)	ETV	671	3	36	16% /6 yrs (non-LC) 9% /6 yrs (LC)
Hirode (RETRACT)	Global cohort	Asian (88%) Caucasian (N=152)	Mixed	1541	3	17	14% /4 yrs (Asian: 11%, Caucasian: 1%)

HBV specific CD8+ T cell response vs. HBsAg loss



Much increased HBsAg loss rate in finite therapy, with comparable excellent prognosis as spontaneous HBsAg loss patients

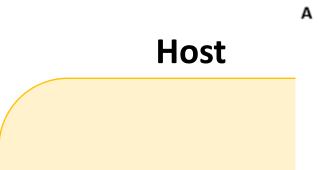
The cumulative HBsAg seroclearance rate was highest in patients with sustained response and lowest in those retreated

SR > CR untreated > CR treated in two independent cohort

Jeng WJ et al, Hepatology 2018, Chen CH et al JID 2019 219(10):1624-1633; Chen CH et al Hepatol Int. 2020 May;14(3):317-325

Retreatment decision is crucial: Not too late for safety, not too early to halt HBsAg clearance

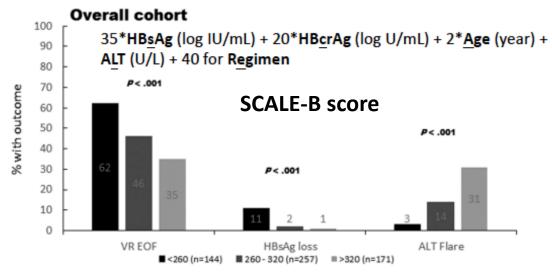
Decompensation is rare, mostly reported in cirrhotic patients¹ 5-year: 2.95% in cirrhosis and 0% in non-cirrhosis [HBeAg: (-)]⁴

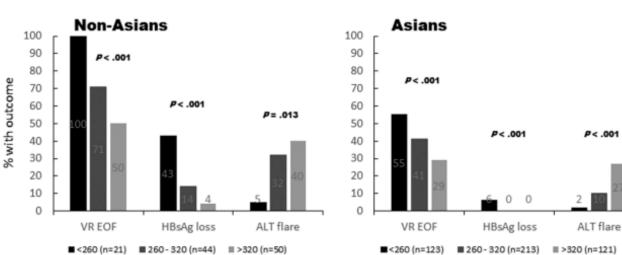

Source	NA T	Tx	F/U	HBs <i>A</i>	Ag loss	aOR or aHR, P value	
Source	IVA	(yrs)	(mos)	CR (retx) No retx		aon of ann, P value	
Hadziyannis ²	ADV	4-5	66	1/15 (6%)	13/18 (72.2%)	0.027 (retx vs. no retx), P=0.002	
Berg ³	TDF	> 4	36	0/8 (0%)	4/13 (30.7%)		
Jeng ⁴	ETV/TDF	3	36	2/269 (0.7%)	40/410 (9.8%)	7.34 (CR+/no-retx vs. CR+/retx), P=0.0124	
Garcia-Lopez ⁵	ETV/TDF	8	34	0/5 (0%)	8/22 (36.4)		
Manolakopoulos ⁶	ETV/TDF	7.5	65	0/28 (0%)	8/29 (27.5%)		

Among 267 no-Rx HBeAg-Neg CHB with 6-year f/u: HBsAg loss in SR: 52.9%, VR: 21.2%, CR: 41.4%

CGMH-LK cohort: 10-year HBsAg loss: no-CR: 51%, CR: 27%, Rx: 5%

^{1.} Hall S. et al Gut 2021; 0:1-13; Hadziyannis S et al. Gastroenterology 2012; 143: 629-36; Berg T. et al J Hepatol 2017; 67:918-924; Jeng WJ et al Hepatology 2018; 68: 425-434 Garcia-Lopez M et al J Hepatol 2020 (in press), Manolakopoulos S et al, Liver Int 2021; 41:48-57; Chen CH et al TDDW 2022 Oral; Jeng WJ et al unpublished data


Current known risk factors for off-Nuc clinical relapse



Older age

Host genetic facto CTLA4 (rs231775); rs3077 1 B

Liver cirrhosis Prior Tx history

-treatment

alization (lower risk for TDF) (e.g. TDF) vs. ETV Ition duration? (Tx d consolidation ≥ er risk for TDF pts)

Chang

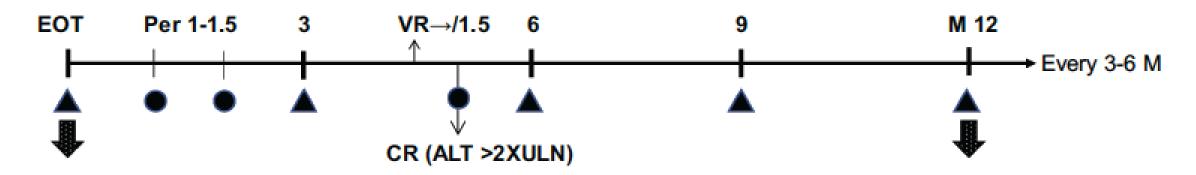
Jeng WJ et al Hepatology. 2013 Dec;58(6):1888-96, Chen CH et al Clinical Gastroenterology and Hepatology 2015;13:1984–1992, Su TH 2018, Chen CH et al CMI 2018 24(9): 997-1000 ML et al. Kou MT et al APT 2019; Kou MT et al Hepatol Int. 2021 Mar 4.; Tseng TN et al Clin Gastroenterol Hepatol. 2020 Nov;18(12):2803-2812; Fan R et al J Infect Dis. 2020 Jul 23;222(4):611-618; Hsu YC et al Aliment Pharmacol Ther. 2019 Jan;49(1):107-115; Sonnoveld MJ et al CGH 2021 in press

EOT HBsAg level is not the absolute factor for finite therapy decision

Among 691 HBeAg (-) finite therapy, only 16.5% EOT HBsAg <100 IU/mL

- No correlation between EOT HBsAg level and time to relapse
- No correlation between EOT HBsAg level and flare severity
 - Using EOT HBsAg 100IU/mL for prediction of CR or flare: AUROC: 0.66, 0.6, respectively¹
- Sustained responder by 2-year f/u

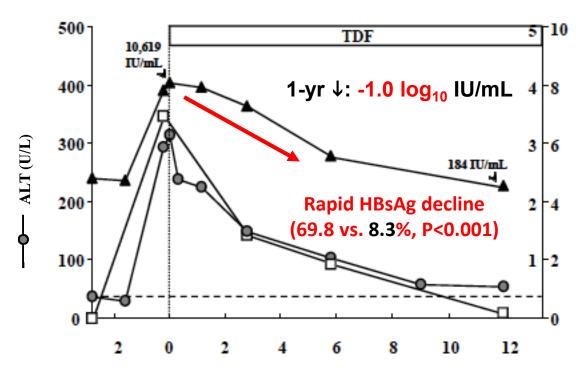
EOT HBsAg, IU/mL	ETV	TDF
<100	71%	47%
100-999	42%	29%
>=1000	35%	23%


Biochemical marker(s) for retreatment

Source	Fu	Criteria to retreat
• Berg T 2017	2-weekly x 3mo	ALT>10X > 2 visit* or
J Hepatol 2017	4-weekly ~	5-10X ≥ 4wk*
		Bil \uparrow >1.5 mg or INR \uparrow > 0.5
 Papatheodoridis GV 	monthly x 3mo	ALT x 10X#
Hepatology 2018	3-monthly~	ALT x 5X + Bil >2 mg
		ALT >3X + DNA >10 ⁵ IU/mL#
• Liem KS	wk 4 and 6	ALT >15X ULN (40)#
Gut 2019	then/6-8 wk	ALT >5X >2 visit*
		ALT 200-600 for 6-8 wks*
•Garcia-Lopez	monthly x 6 mo	ALT >10X ULN x 2 visits*
J Hepatol 2020	then/3 or 4 monthly~24mo	ALT >5-10X ULN + DNA>2000IU/mL ≥ 4wk
		ALT >2-5X ULN + DNA>2000IU/mL ≥ 6 mos

^{*} follow-up >4-weekly: may be too late # data at one time point may be too early

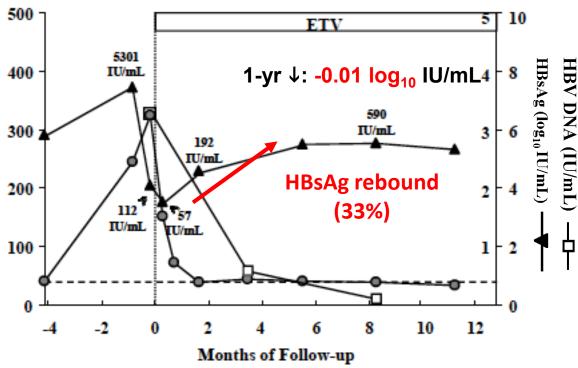
Off-Nuc follow-up strategy: APASL guideline (modified)


Monitoring is mandatory!

- Off-NUC: ALT/m x 3m; ALT+HBV DNA/3m for 1yr; then ALT/HBV per 3-6m
- Once virological relapse (HBV DNA>2000IU/mL) \rightarrow q1-1.5m ALT check up
- If ALT increasing or > 5X ULN: ALT, bilirubin, INR/1-2 wk for retreatment decision

Retreatment in patients with host-dominating flare halts the decline of HBsAg

Virus dominating flare (Ineffective flare)


Rapid HBsAg decline: >0.5 log/6m or >1 log/1yr

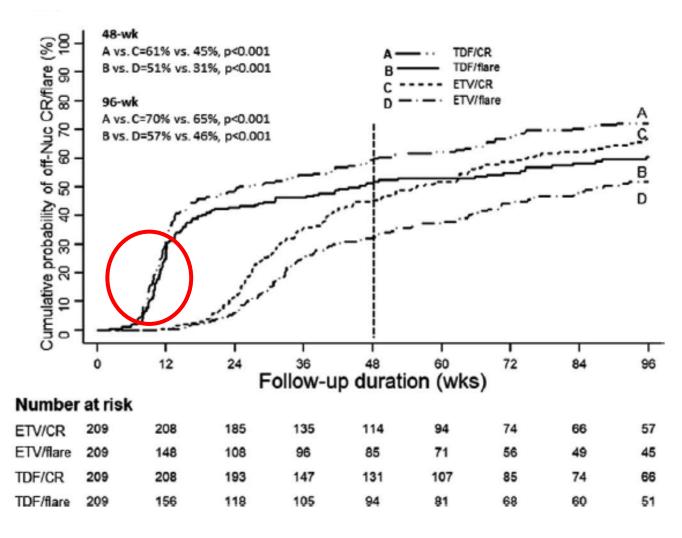
HBsAg < 100 IU/mL and HBsAg loss by 3 year:

No retx: 20% and 6%

Retx: 32% and 2%

Host dominating flare (Effective flare)

HBsAg < 100 IU/mL and HBsAg loss by 3 year:


No retx: 25% and 21%

Retx: 12% and 0%

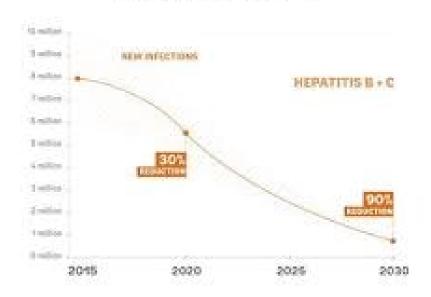
Distinct different relapse pattern between ETV and TDF Valid in all subgroups

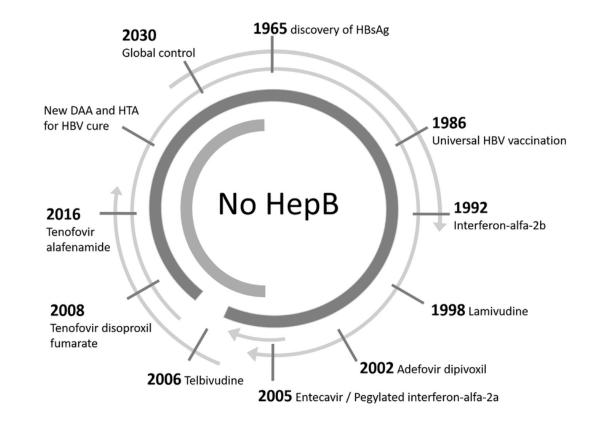
Off-therapy relapse and flare occurs simultaneously in off-TDF patients

Factors for off-therapy flare	aHR (95%CI)	P value
Age >=55	1.37 (1.14-1.64)	<0.001
Cirrhosis	1.49 (1.24-1.79)	<0.001
Prior Tx	1.37 (1.14-1.64)	<0.001
HBV Genotype C vs. B	0.69 (0.53-0.88)	0.004
PreTx HBV DNA >6 log ₁₀ IU/mL	1.28 (1.05-1.57)	0.001
PreTx HBsAg >3 6 log ₁₀ IU/mL	1.45 (1.12-1.81)	<0.001
TDF vs. ETV	2.35 (1.91-2.89)	<0.001
EOT HBsAg<100	0.49 (0.35-0.67)	<0.001

Although severe flare or hepatic decompensation is rare in noncirrhotic patients, it happens.

- During 1999-2020, 13 of the 1234 patients (1%) encountered hepatic decompensation after stopping Nuc [12/495 (2.4%): cirrhosis, 1/739 (0.1%): non-cirrhosis → the non-LC Pt successfully recovered] ¹
 - 7 of 13 not adhered to follow-up protocol
 - Off-Nuc hepatic decompensation risk factor: **Cirrhosis** [aHR: 20.5 (2.65-159.37), P=0.004], **Off-TDF** [vs. ETV, aHR: 5.53 (1.73-17.69), P=0.004]
- 5 of 411 (1.2%) non-LC hepatic decompensation, 8-year: 3%²
 - LAM or ETV, 3/148 (2%) HBe+ -> one mortality, 2/263 HBe- (0.76%)
- 4 of 375 (1%) HBeAg Neg non-LC hepatic decompensation (T.Bil>2 or INR prolonged 3 sec)
 - 2 ETV, 2TDF


Same site


Summary

- Finite therapy in HBeAg negative non-cirrhotic patients is considerable if stringent follow-up being provided and with well mutual communication between physicians and patients, about the risk and benefit.
- Retreatment criteria is still await to be explored: how to be safe but not too early to halt the chance toward functional cure


PROPOSED GLOBAL TARGETS FOR VIRAL HEPATITIS

Thank you for your attention!

