Residual risk of Hepatitis B virus transfusion-transmission: need for reappraisal of blood safety measures?

D Candotti

NATIONAL INSTITUTE OF BLOOD TRANSFUSION
Dept. Bloodborne Pathogens
Transfusion Infectious Risk National Reference Center
Paris, France
Hepatitis B virus in transfusion

- Transmission with infected blood or blood products
- Continuous and significant reduction of HBV transfusion-transmission risk over the past decades
- Implementation of safety measures:
 - Donor selection --> evaluation of behavior risks
 - Serological screening --> HBsAg and anti-HBc Ab
 - Molecular screening --> HBV DNA
 - Pathogen reduction procedures
- Hepatitis B remains the most frequent transfusion-transmitted viral infection

VHPB Technical Meeting, Vilnius, Lithuania, April 2019
HBV screening in blood donors

<table>
<thead>
<tr>
<th>Year</th>
<th>HBsAg</th>
<th>Anti-HBc</th>
<th>HBV-DNA (8-24 MP)</th>
<th>HBV DNA (ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log titer

- Chronic infection
- Resolved infection

Antibodies:
- Anti-HBs: 15 d
- Anti-HBc: 32.5 d

Markers:
- HBV DNA

WP (Weeks/months Years):
- HBsAg: 15 d
- Anti-HBs: 32.5 d

VHPB Technical Meeting, Vilnius, Lithuania, April 2019
Residual risk of HBV transfusion-transmission

• Residual risk depends on several factors
 - HBV epidemiology
 - Donor populations
 - Screening strategies

• Estimation of residual risk
 - Low endemic settings: <1 – 1.4 per million donations
 - High endemic settings: 16 – >100 per million donations

• Limits
 - Mathematical models used
 - Lack of recent and liable HBV epidemiology data in blood donors

• Risk mainly related to failure of serological and/or molecular screening
 - Pre-seroconversion window period (acute infection)
 - Late chronic infection --> occult HBV infection (OBI)
Confirmed HBV-positive donations
N = 9,455*

- **HBsAg+/DNA-** (6%)
 - WP (26%)
 - Anti-HBc- Anti-HBs- (2%)
 - OBI (71%)
 - Anti-HBc+ Anti-HBs- (45%)
 - Unclassified (3%)
 - Anti-HBc+ Anti-HBs+ (49%)

- **HBsAg-/DNA+** (9%)

- **HBsAg+/DNA+** (85%)

* Donors from South Africa (n=3,416), the Mediterranean region (n=1,608), Central & Northern Europe (n=503), South East Asia (n=3,754), and Oceania (n=174); ID-NAT screening with Procleix Ultrio (Grifols) and HBsAg with Abbott PRISM or ARCHITECT assays. Data from Lelie et al. Transfusion 2017.
HBV DNA load distribution in 191 OBI donors

Viral DNA load (IU/mL)

- <5
- 2-9
- 10-19
- 20-29
- 30-39
- 40-49
- 50-59
- 60-69
- 70-79
- 80-89
- 90-99
- 100-199
- 200-999
- >1000

% of total

Mini-pools of 6 - 61%

NAT sensitivity 3 IU/mL

VHPB Technical Meeting, Vilnius, Lithuania, April 2019
OBI vs NAT non-repeatable reactive donations

- Definition according to assay used and users testing algorithm

- NRR rates of 0.09% - 0.29% for Ultrio, Ultrio Plus, and Cobas MP-6

- NRR NAT testing frequently associated with seronegative donations

<table>
<thead>
<tr>
<th>Screening assays</th>
<th>NAT yield IR</th>
<th>dHBV R</th>
<th>dHCV R</th>
<th>dHIV R</th>
<th>NRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrio</td>
<td>224</td>
<td>58 (26%)</td>
<td>1 (0.4%)</td>
<td>1 (0.4%)</td>
<td>164 (73.2%)</td>
</tr>
<tr>
<td>Ultrio Plus</td>
<td>1,224</td>
<td>389 (32%)</td>
<td>0</td>
<td>1 (0.08%)</td>
<td>834 (68%)</td>
</tr>
</tbody>
</table>

L. Wang, personal communication
Confirmation of OBI/NRR NAT donors

- Follow-up to monitor seroconversion and exclude acute infection
- Re-testing from initial plasma bag to resolve sample cross-contamination
- Re-testing with different NAT assays
 - Different analytical sensitivity between assays

<table>
<thead>
<tr>
<th>Commercial HBV NAT assay reactivity of 52 anti-HBc reactive donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPX</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>34 (65%)</td>
</tr>
</tbody>
</table>

- Multiple repeats of the screening and/or discriminatory test
 - Poisson distribution principle but how many repeats?
 - i.e. HBV reactive in 3/23 tests (Candotti et al. Gut 2018)
 - Costly & Time consuming
 - Large volume of sample
Increasing HBV DNA detection sensitivity

- Developing highly sensitive alternative in-house real-time qPCR and nested PCR assays
 - Increased amplification efficiency of short regions
 - Sequencing of amplified products --> definitive confirmation

- Increasing the volume of plasma extracted (0.2 mL --> 5 mL)

- Concentrating viral particles from large volume of plasma (10-20 mL)
 - Immuno or chemical (i.e. heparin) capture
 - Precipitation with PEG
 - Ultracentrifugation

Extremely low viral load but potential infectious risk
• Development of HBsAg assays with improved analytical sensitivity

 - Enzymatic immunoassays (EIA) --> LoD: 0.013 – 1 IU/mL
 - Chemiluminescent enzyme immunoassay (CLIA) --> LoD = 5 mIU/mL
 - Immune complex transfer CLIA (ICT-CLIA) --> LoD = 0.5 mIU/mL

HBsAg reactivity of 36 previously characterized OBI donors.

<table>
<thead>
<tr>
<th></th>
<th>HBsAg Liaison-XL</th>
<th>Lumipulse G HBsAg-Quant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(DiaSorin; LoQ: 0.05 IU/mL)</td>
<td>(Fujirebio; LoQ: 0.005 IU/mL)</td>
</tr>
<tr>
<td>Reactive samples</td>
<td>0/32*</td>
<td>7/36</td>
</tr>
<tr>
<td>%</td>
<td>-</td>
<td>19.4%</td>
</tr>
</tbody>
</table>

*4 not tested due to insufficient volume but non-reactive with the Roche HBsAg qualitative assay.

Pronier et al. 2018 submitted.
Overtime fluctuation of HBV DNA load in OBI donors

Clinical observations
- Transmission by blood products tested anti-HBc only
- Viral reactivation in immuno-suppressed patients anti-HBc only
HBV transmission from anti-HBc only OBI donor
6 cases documented
(Candotti et al. Gut 2018)

<table>
<thead>
<tr>
<th>Recipient 2-1</th>
<th>Recipient 2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female 69y, dialysis & cirrhosis</td>
<td>Male 67y, trauma surgery</td>
</tr>
<tr>
<td>FFP transfused</td>
<td>FFP transfused (x+3)</td>
</tr>
<tr>
<td>Hepatitis 8 months post-tx</td>
<td>16 months post-tx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pre-tx</th>
<th>Post-tx</th>
<th>Pre-tx</th>
<th>Post-tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HBV DNA</td>
<td>ND</td>
<td>6E+07 IU/mL</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Anti-HBc</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Donor 2
Male, 53y, repeat donor (x21; 2009-2014)
HBsAg & DNA -
(follow-up: 3xR & 20xNR)

Anti-HBc +
Ultra ⊆ 20 mL plasma → DNA pos
HBV transmission from anti-HBc only OBI donor

6 cases documented

(Candotti *et al.* Gut 2018)

<table>
<thead>
<tr>
<th>Recipient 2-1</th>
<th>Recipient 2-2</th>
<th>Recipient 2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female 69y, dialysis & cirrhosis</td>
<td>Male 67y, trauma surgery</td>
<td>Male 79y, gastro surgery</td>
</tr>
<tr>
<td>FFP transfused</td>
<td>FFP transfused (x+3)</td>
<td>FFP transfused (x-57)</td>
</tr>
<tr>
<td>Hepatitis 8 months post-tx</td>
<td>16 months post-tx</td>
<td>78 months post-tx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pre-tx</th>
<th>Post-tx</th>
<th></th>
<th>Pre-tx</th>
<th>Post-tx</th>
<th></th>
<th>Pre-tx</th>
<th>Post-tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg</td>
<td>-</td>
<td>+</td>
<td></td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HBV DNA</td>
<td>ND</td>
<td>6E+07 IU/mL</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>Anti-HBc</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
</tr>
</tbody>
</table>

Donor 2

Male, 53y, repeat donor (x21; 2009-2014)

- HBsAg - & DNA -
 - (follow-up: 3xR & 20xNR)

- **Anti-HBc +**
 - **Ultra ≥ 20 mL plasma → DNA pos**
HBV transmission from anti-HBc only OBI donor 6 cases documented
(Candotti et al. Gut 2018)

Recipient 2-1
Female 69y, dialysis & cirrhosis
- FFP transfused
- Hepatitis 8 months post-tx

<table>
<thead>
<tr>
<th>Pre-tx</th>
<th>Post-tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg</td>
<td>-</td>
</tr>
<tr>
<td>HBV DNA</td>
<td>ND</td>
</tr>
<tr>
<td>Anti-HBc</td>
<td>-</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td>-</td>
</tr>
</tbody>
</table>

Recipient 2-2
Male 67y, trauma surgery
- FFP transfused (x+3)
- 16 months post-tx

<table>
<thead>
<tr>
<th>Pre-tx</th>
<th>Post-tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg</td>
<td>-</td>
</tr>
<tr>
<td>HBV DNA</td>
<td>ND</td>
</tr>
<tr>
<td>Anti-HBc</td>
<td>+</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td>+</td>
</tr>
</tbody>
</table>

Recipient 2-3
Male 79y, gastro surgery
- FFP transfused (x-57)
- 78 months post-tx

<table>
<thead>
<tr>
<th>Pre-tx</th>
<th>Post-tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg</td>
<td>-</td>
</tr>
<tr>
<td>HBV DNA</td>
<td>ND</td>
</tr>
<tr>
<td>Anti-HBc</td>
<td>+</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td>+</td>
</tr>
</tbody>
</table>

Donor 2
Male, 53y, repeat donor (x21; 2009-2014)
- HBsAg - & DNA -
 - (follow-up: 3xR & 20xNR)
- Anti-HBc +
 - Ultra 20 mL plasma → DNA pos

3,257-nt sequences
Genotype D2
99.9% identity

Unaware of infection
No clinical sympt.
VL: 10^9 IU/mL
HBV infection in 31 recipients transfused with HBsAg neg/HBV DNA neg blood products

<table>
<thead>
<tr>
<th>Recipients</th>
<th>Blood products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FFP</td>
</tr>
<tr>
<td>Anti-HBs pos</td>
<td>-</td>
</tr>
<tr>
<td>Anti-HBs neg</td>
<td>7/11 (64%)</td>
</tr>
</tbody>
</table>

* Pathogen reduction treatment of platelet concentrates.

TTI residual risk associated with HBsAg neg/HBV DNA neg/anti-HBc pos donations:
3% (RBC) - 14% (FFP)
Anti-HBs+ OBI transfusion transmission

(Levicnik Stezinare et al. J Hepatol 2008)

Viral load (IU/ml)

Anti-HBs (IU/L)

Time from Index sample (months)

no infection

infections
Can anti-HBc testing prevent OBI transmission?

- Anti-HBc testing improves blood safety but limited by HBV prevalence --> blood shortage

- Anti-HBc negative OBI donors

<table>
<thead>
<tr>
<th>Anti-HBV markers</th>
<th>OBI donor origins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dalian (China)</td>
</tr>
<tr>
<td>N</td>
<td>294</td>
</tr>
<tr>
<td>Anti-HBc +/-anti-HBs +</td>
<td>108 (36.7%)</td>
</tr>
<tr>
<td>Anti-HBc +/-anti-HBs -</td>
<td>160 (54.5%)</td>
</tr>
<tr>
<td>Anti-HBc -/anti-HBs +</td>
<td>25 (8.5%)</td>
</tr>
<tr>
<td>Anti-HBc -/anti-HBs -</td>
<td>1 (0.3%)</td>
</tr>
</tbody>
</table>

*Hong Kong (n=75), Malaysia (n=3), Singapore (n=11), and Thailand (n=22) (Candotti et al. Gut 2012).

** Donors from South Africa (n=3,416), the Mediterranean region (n=1,608), Central & Northern Europe (n=503), South East Asia (n=3,754), and Oceania (n=174) (Lelie et al. Transfusion 2017).
Conclusions (1)

- Desirable risk zero goal yet to be achieved despite accumulation of biosafety measures (utopic?)

- OBI remains the main risk of TTID but identification depends on:
 - Archived sample availability --> limited volume
 - Extended serologic and molecular testing of donor & recipient
 - Analytical performance of serologic and molecular assays used
 - Genetic characterization of viral strains infecting donor & recipient

- Anti-HBc-only donations can be infectious in immunocompetent recipients
 - FFP (28.6% - 50%) > RBC (0% - 4.5%)
 - 81% recipients not infected
 - Transmission rate: 9.5% (molecular confirmation) – 19% (indirect evidences)

- Estimated HBV infectious dose: 16-160 virions (<600 IU) per transfusion
 - Related to residual plasma volume in blood products
 - Protective role of anti-HBs in donor and/or recipient (non-optimal?)
 - Immune status of recipient
• Anti-HBc testing improves blood safety but limited by HBV prevalence

• Infected donations tested false-negative with serology and/or NAT still persist

• Frequency of exposure to HBV-infected blood products and transfusion-transmission underestimated?

• Debates on apparent redundancy of markers and blood testing cost reduction
 - HBsAg testing removal when NAT and HBcAb testing in place
 - Large scale studies needed to evaluate impact on blood safety

• HBV screening strategy should be decided according to local epidemiology, infectious risk estimate, and resources

• Perspectives:
 - Universal HBV vaccination (?) --> OBI reported in vaccinated blood donors
 - Pathogen reduction technology --> in dvlpt, cost, clinical impact?
Acknowledgements

Institut National Transfusion Sanguine
DATS/CNR Risques Infectieux Transfusionnels
Paris, France
S. Laperche
L. Boizeau

Virology Sub-group
Transfusion-transmitted Infectious Diseases Working Party
ISBT
M. Vermeulen
N. Lelie
P. Grabarczyk
M. Miletic
C. Niederhauser
...

Blood Transfusion Center
of Slovenia
Ljubljana, Slovenia
S. Levicnik-Stezinar

University of Cambridge
Dept Haematology
Cambridge, UK
J.-P. Allain
F. Enjalbert
S. Assennato

Dalian Blood Center
Dalian, P. R. China
X. Deng
X. Liang
H. Chen

Blood Center staffs
&
Donors