«Прежде всего - не навреди»

Внедрение в практику саморазрушающихся шприцев и обеспечение безопасности инъекций в работе систем иммунизации развивающихся стран

Департамент охраны окружающей человека среды Департамент вакцин и биологических препаратов

Всемирная организация здравоохранения

«Прежде всего - не навреди»

Внедрение в практику саморазрушающихся шприцев и обеспечение безопасности инъекций в работе систем иммунизации развивающихся стран

Охрана окружающей человека среды Вакцины и биологические препараты

Всемирная организация здравоохранения BO3

Департамент вакцин и биологических препаратов выражает благодарность донорам, чья бескорыстная финансовая помощь способствовала публикации этого документа.

> Этот документ является результатом совместной работы
> Расширенной программы по иммунизации
> Департамента вакцин и биологических препаратов, а также бригады специалистов по вопросам водоснабжения, санитарии и здравоохранения
> Департамента охраны окружающей человека среды.

Код для размещения заказов: WHO/V\&B/02.26
Отпечатано в ноябре 2002 г.

Этот документ имеется в сети Интернет по адресу:
www.who.int/vaccines-documents/

Экземпляры документа можно заказать через:
World Health Organization
Department of Vaccines and Biologicals
CH-1211 Geneva 27, Switzerland

- Факс: + 41227914227 • Эл. nочта: vaccines @ who.int •

© Всемирная организация здравоохранения, 2002 г.

Все права сохраняются. Публикации Всемирной организации здравоохранения можно приобрести через Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (тел.: +41 22791 2476; факс: + 4122791 48 57; эл. почта: bookorders@who.int). Обрашения с просьбой разрешить перепечатку либо перевод публикаций $\mathrm{BO3}$ - будь то в целях реализации или для некоммерческого распространения - следует направлять в Отдел публикаций по вышеуказанному адресу
(факс: + 4122791 4806; эл. почта: permissions@ who.int).
Упоминание конкретных компаний или продукции отдельных изготовителей не означает, что Всемирная организация здравоохранения поддерживает или рекомендует их или отдает им предпочтение перед другими компаниями или изготовителями, не упомянутыми в тексте. За исключением ошибок и пропусков, названия патентованных продуктов выделены начальными прописными буквами.

Всемирная организация здравоохранения не дает каких-либо гарантий относительно полноты и правильности сведений, приведенных в данной публикации, и не несет какой-либо ответственности за ушерб, причиненный в результате их использования на практике.

Оформление и макет: L'IV Com Sàrl, г. Морж, Швейцария

Содержание

Сокращения

1. Введение
2. Порядок проведения оценки безопасности инъекций
3. Планирование в целях безопасности инъекций
4. Обеспечение адекватного снабжения СР-ппприцами и контейнерами для безопасного хранения отходов и расчет соответствуюших затрат
5. Выделение достаточных финансовых средств
6. Безопасное удаление использованного инъекционного инструментария
6.1 Принятые на современном этапе болышинством стран методы решения проблемы удаления отходов, связанных с иммунизацией
6.2 Варианты решения проблемы удаления отходов, связанных с иммунизацией, которые предлагаются на будушее
7. Профессиональная подготовка медработников по безопасности инъекций
8. Вопросы курации и мониторинга
9. Пропаганда идеи безопасности инъекций
10. Безопасность инъекций при проведении массовых прививочных кампаний
11. Актуальность данного вопроса для служб здравоохранения иного профиля

12. Заключение

Библиография и дополнительная литература
Приложение 1: Безопасность инъекций. Совместное заявление ВОЗ-ЮНИСЕФЮНФПА об использовании иммунизационными службами саморазрушающихся шприцев
Приложение 2: Памятка для разработки национальной стратегии по безопасному и надлежащему использованию инъекций
Приложение 3: Памятка для национальной стратегии удаления медицинских отходов
Приложение 4: Фактическая информация по планированию и обеспечению безопасности в ходе проведения массовых прививочных кампаний
Приложение 5: Последние новости в области ваклин и других биологических препаратов
Приложение 6: Наиболее передовая практика инфекционного контроля
Приложение 7: Технические характеристики печи для сжигания отходов "de Montfort"
Приложение 8: Технические характеристики печи для сжигания отходов "SICIM"

Приложение 9:	Технические характеристики мусоросжигательной установки "Медісі 400"
Приложение 10:	Технические характеристики автоклава с дробилкой Приложение 11: Типовая рабочая инструкция для медработников по использованию и удалению СР-Ішрицев и контейнеров для безопасного хранения
Приложение 12:	отходов Типовая рабочая инструкция для руководителей программ иммунизации по распределению СР-Ішрицев и контейнеров для
Приложение 13:	безопасного хранения отходов Типовая рабочая инструкция для руководителей программ иммунизации и операторов мусоросжигательных установок по уничтожению использованных СР-шприцев и контейнеров для
безопасного хранения отходов	

Сокращения

СР	саморазрушающийся (шприц)
ПВО	поствакцинальные осложнения
АКДС	адсорбированная коклюшно-дифтерийно-столбнячная вакцина
РПИ	Распиренная программа ВОЗ по иммунизации
ВГВ	вирус гепатита В
Нів	Наеторһilus influепzае типа в
ВИЧ	вирус иммунодефицита человека
МКК	межучрежденческий координационный комитет
МФККП	Международная федерация обществ Красного Креста и Красного
Полумесяца	
ГСБИ	Глобальная сеть по безопасности инъекций
ЮНФПА	Фонд ОоН для деятельности в области народонаселения
ЮНИСЕФ	Детский фонд Организации Объединенных Наций
V\&В	Департамент вакцин и биологических препаратов
ВОЗ	Всемирная организация здравоохранения

1. Введение

Hесмотря на то, что основная цель иммунизации заключается в предупреждении заболеваний и смертей, в основе каких бы то ни было профилактических мероприятий в области здравоохранения должен быть принцип primum non посеге («Прежде всего - не навреди»).

Доподлинно известно, что введение инъекџий при несоблюдении стерильности данной процедуры может обусловить развитие абсцесса и передачу угрожающих жизни инфекционных заболеваний, в том числе гепатита B, гепатита С и ВИЧ. При этом не только небезопасная практика введения инъекций представляет собой прямую угрозу здоровью реципиента и медработника, но и ненадлежащее удаление использованного инъекционного оборудования сопряжено с постоянным риском распространения инфекции и с экологической опасностью как по отношению к отдельным лицам, так и местным сообществам. Вот почему безопасность инъекций, равно как и практика надлежащего удаления использованного инъекционного оборудования, должны быть объектом внимания со стороны сектора здравоохранения в целом.

Несмотря на то, что на национальные службы иммунизации и приходится всего $5-10 \%$ от суммарной доли всех выполняемых инъекций, данная проблема особенно волнует специалистов по вакцинопрофилактике, поскольку (a) именно они имеют дело с детьми грудного и более старшего возраста, состояние здоровья которых, как правило, оценивается как хорошее, и (б) прежде всего дети зачастую относятся к наиболее уязвимой группе лиц ввиду небрежного удаления использованных пприцев и игл.

Благодаря применению саморазрушающихся (СР) пприцев практически удается устранить риск распространения от пациента к пациенту передающихся через кровь патогенных микроорганизмов (таких, как возбудителей гепатита В или ВИЧ), так как упомянутые шприцы невозможно использовать повторно. Отныне СР-шприцы широко доступны по невысокой цене (по сравнению со стоимостью одноразовых шприцев, такие шприцы дороже меныше, чем на 20%). В самом деле, теперь в связи как с плановой иммунизацией, так и с массовыми прививочными кампаниями для введения вакıин явное предпочтение отдается использованию СР-пппицев (рис.1).

Саморазрушаюшийся шшпиц

Контейнер для безопасного хранения отходов

В совместном заявлении ВОЗ-ЮНИСЕФ-ЮНФПА-МФККП всем странам рекомендовано к концу 2003 г. перейти на использование всеми иммунизационными службами исключительно СР-Іाприцев ${ }^{1}$ (Приложение 1).

Внедрение в практику СР-Іाприцев служит прекрасным поводом для проведения обзора и повышения уровня безопасности инъекций в целом. С помощью этого документа лица, формулирующие политику, и руководители программ смогут лучше планировать работу по практическому использованию СР-пाприцев в рамках всеобъемлющей национальной политики и плана действий по совершенствованию безопасности инъекций в процессе плановой иммунизации и массовых прививочных кампаний.

Мероприятия, необходимые для успешного решения вопроса о внедрении СР-шприцев и обеспечении безопасности инъекций, включают в себя следуюшее:

- Проведение оценки безопасности инъекций.
- Разработка политики, стратегии и ежегодного плана работы по безопасности инъекций.
- Формирование надежного механизма по определению потребностей в оборудовании, а также по созданию минимального запаса оборудования и материалов и эффективных систем снабжения и распределения инъекционного оборудования.
- Выделение необходимых финансовых средств в поддержку всех компонентов плана мероприятий по обеспечению безопасности инъекций, включая безопасное удаление отработанного инструментария.
- Планирование работы по безопасному удалению инъекционного оборудования посредством постепенной реализации приемлемых вариантов решения проблемы удаления отходов.

[^0]- Проведение профессионального обучения для медработников и руководителей по обеспечению безопасности инъекций и организации удаления отходов.
- Внедрение в практику на всех уровнях процедур мониторинга и курации в целях формирования правильных навыков у медработников, организации поставок адекватных расходных материалов и приобретения установок для удаления отходов.

Перечисленные мероприятия будут более подробно рассмотрены в разделах 2-8.
Рис. 1 Фактическое и прогнозируемое количество СР-пприцев, закупаемых через ЮНИСЕФ

Источпик: ЮНИСЕФ

2. Порядок проведения оценки безопасности инъекций

Благодаря проведению всеобъемлющей оценки безопасности инъекций будут получены исходные данные о сложившейся ситуации, на основании которых можно будет оказьвать влияние на позицию лиц, принимаюших решения, и отслеживать ход работы с течением времени. Такая оценка позволит высветить назревшие проблемы и поможет спланировать проведение эффективных и результативных профилактических мероприятий.

Была разработана и апробирована на местах стандартная методология проведения оценки безопасности инъекций. ${ }^{2}$ Обычно для проведения оценки безопасности инъекций требуется 2-3 недели, причем сумма связанных с этим затрат колеблется в пределах 5-10 тыс. долл. СІІА. В процессе оценки безопасности инъекций уточняется встречаемость небезопасной практики введения инъекций в работе медицинских учреждений. Такая процедура позволяет установить, соответствует ли отдельно взятое учреждение минимальному уровню требований, предъявляемых к оборудованию, расходным материалам и к организации удаления отходов. В ходе этой оценки также обращается внимание на небезопасную практику введения инъекций, которая может служить причиной возникновения инфекций, передаваемьх через кровь. Более того, на основании результатов выборочной проверки медицинских учреждений страны можно определить долю медицинских учреждений в целом, где практику введения инъекций можно считать безопасной.

В рекомендациях, полученных в итоге проверки, основное внимание уделяется тем соображениям, которые имеют прямое отношение к профилактическим мероприятиям по обеспечению безопасности инъекций. И, наконец, следует отметить, что для того, чтобы приступить к использованию СР-пппицев и обеспечить совершенствование безопасной практики введения инъекций, не следует дожидаться сроков проведения названной оценки. Конкретные меры в этом направлении могут и должны быть предприняты незамедлительно!

3. Планирование в целях безопасности инъекций

 эффективная система планирования и управления. В частности, в рамках систем иммунизации следует разработать всеобъемлюший подход к обеспечению безопасности

[^1]вакцинопрофилактики, который предполагает принятие программных заявлений и соответствующей стратегии, создание финансового механизма и системы поставок, принятие ежегодных планов работы.

В программном заявлении может быть изложена перспектива или общая цель обеспечения безопасности инъекций, например, включение в текст следующей фразы: «Министерство здравоохранения проводит политику безопасных инъекций при иммунизации населения в 100% случаев». Как правило, за короткое время реализация таких проектов вряд ли возможна, - именно поэтому следует разрабатывать рассчитанный на многие годы план мероприятий по обеспечению безопасной иммунизации, в котором будут оговорены задачи и стратегии, поставленные на конкретный год.

Такая стратегия, не являясь подробным планом или программой действий, скорее всего, представляет собой общее описание путей достижения поставленных целей, т.е. намеченных для осуществления форм обслуживания или профилактических мероприятий. B ежегодном плане работы изложены запланированные на год мероприятия, которые необходимо осуществить для реализации принятых стратегий, включая их конкретные сроки и смету расходов.

Стратегии по внедрению в практику СР-пприцев и методов обеспечения безопасности инъекций и безопасного удаления использованного инъекционного инструментария должны быть ориентированы на все уровни функционирования службы иммунизации с охватом не только лиц, принимаюших решения, и медработников, но и населения в целом. Лица, принимаюшие решения, обязаны осознавать степень (т.е. масшттаб и глубину) угрозы общественному здоровью ввиду неспособности обеспечить безопасность инъекций, а также осуществимость мер по ее нивелированию. Все медработники без исключения обязаны владеть необходимыми знаниями и навыками и располагать соответствующим оборудованием для безопасного введения инъекций. В конечном итоге население в целом должно осознавать необходимость безопасного проведения любых иммунизационных мероприятий и требовать оказание соответствующей формы обслуживания.

В целях решения вопросов согласования и проведения практической работы следует определить кандидатуру национального координатора по безопасности инъекций. На областном или районном уровнях необходимо назначить конкретных специалистов по безопасности иммунизации с тем, чтобы они несли ответственность за обеспечение безопасности инъекций и безопасное удаление отработанного инъекционного инструментария. Назначаемые таким образом специалисты должны занимать достаточно высокую должность (например, пост заместителя руководителя Расширенной программы по иммунизации (РПИ)) и нести ответственность за все аспекты безопасности, так как технические вопросы, практические мероприятия и задачи мониторинга (включая соблюдение требований холодовой цепи и решение вопросов материально-технического обеспечения) взаимосвязаны самым тесным образом.

На назначенных специалистов по безопасности иммунизации возлагается ответственность за следующее: общее руководство системой, обеспечение наличия на всех уровнях адекватных расходных материалов и оборудования, расчет потребностей, подлержание товарных запасов на должном уровне, контроль безопасности инъекций в целях вакцинопрофилактики и поиск эффективных методов удаления использованных шприцев и игл. На всех уровнях, где фактически имеет место удаление отработанного инструментария, также должны быть определены кандидатуры операторов,

ответственных за безопасное удаление медицинских отходов, которые должны пройти соответствующий курс профессионального обучения.

Контрольный перечень мероприятий по планированию безопасности инъекций

Составление плана мероприятий по безопасности инъекций:

Ø определение заинтересованных сторон;
च проведение оценки ситуации;
\square включение затрат на мероприятия по безопасности в общую смету расходов;
\square обеспечение безопасности инъекций посредством обучения и снабжения расходными материалами;
Ø организация удаления использованного острого/колющего инструментария;
\square отслеживание и документальное оформление полученных результатов;
マ анализ результатов и извлечение полезных уроков из практики.

Обеспечение безопасности вакцин на всех этапах - от поставок вакцин до их введения:

च использование вакцины и инъекционных материалов, прошедших преквалификацию или одобренных национальным контрольным органом;
च соблюдение принципа групповой упаковки при отгрузке лиофилизированных вакцин в комплекте с соответствуюшим растворителем, шприцами для восстановления готовых форм, СР-ппррицами и контейнерами для хранения отработанного острого/колюшего инструментария;
\square распространение на всех уровнях информации о факторах риска, связанных с небезопасной практикой;
ஏ развитие у медработников надлежащих технических навыков.

Организация удаления отработанного инъекционного оборудования:

マ анализ местного природоохранного законодательства и допустимых нормативов по обработке и удалению отработанного острого/колюшего инструментария;
■ планирование мероприятий, связанных с хранением, транспортировкой и удалением отходов;
п поиск практически приемлемых и простых вариантов решения проблемы;
м мониторинг удаления отходов на регулярной и постоянной основе.

4. Обеспечение адекватного снабжения СРшприцами и контейнерами для безопасного хранения отходов и расчет соответствующих затрат

Чтобы обеспечить безопасность инъекций, необходимо организовать надежное и адекватное снабжение СР-шприцами, одноразовыми шприцами для восстановления готовых форм и предохранительными контейнерами для безопасного хранения отходов. В самом деле, согласно политике ВОЗ и ЮНИСЕФ, все заказы на поставку вакцины должны быть «сгруппированы» в комплекте с соответствующим количеством СР-шприцев и контейнеров для безопасного хранения отходов.

Пятилитровый ${ }^{3}$ предохранительный контейнер вмещает примерно 100 использованных игл и шприцев. Все стационарные центры и мобильные бригады специалистов должны регулярно обеспечиваться соответствующим количеством контейнеров для безопасного хранения отходов.

Ориентировочное количество необходимого оборудования определяется на основании расчетных данных, приведенных в табл. 1 (такие расчеты следует проводить повторно по каждому типу вакцины, которая используется в соответствии с национальным календарем прививок, а также в связи с проведением специальных массовых прививочных кампаний).

[^2]Таблица 1. Типовой расчет расходных материалов, необходимых для вакцины АКДС-ВГВ-Hib
(Примечание: данная таблица долэжа быть составлена и заполнена повторио по каждому типу вакиины, которая включена в начиональный календарь прививок)

Расчеты	2002 г.	2003 г.	2004 г.
a) Общая численность детей в возрасте менее 1 года	871983	894654	917915
b) Предполагаемый уровень охвата	80\%	80\%	80\%
c) Число детей, вошедших в целевую группу для вакцинации ($\mathrm{a} \times \mathrm{b}$)	697596	715723	734332
d) Кол-во доз на 1 ребенка	3	3	3
e) Фактор неизбежных отходов	1.32	1.30	1.18
f) Кол-во необходимых доз ($\mathrm{x} \mathrm{d} \mathrm{x} \mathrm{e)}$	2762441	2791320	2599535
g) Кол-во доз для резерва (f x 25\%*)	690610	7220*	
h) Общее кол-во доз ($\mathrm{f}+\mathrm{g}$)	3453051	2798539	2599535
i) Кол-во доз в одном флаконе	2	2	2
j) Общее кол-во флаконов ($\mathrm{h}+\mathrm{i}$)	1726525	1399270	1299768
k) СР-шприцы [(c x d) + 10% на неизбежные отходы**]	2302034	2361886	2423296
1) Резервный запас СР-шприцев ($\mathrm{x} \times 25 \%$ *)	575508	14 963*	$15352 *$
m) Общее кол-во СР-шприцев ($\mathrm{k}+\mathrm{l}$)	2877542	2376849	2438648
n) Шппицы для восстановления готовых форм (одноразовые) ${ }^{4}(\mathrm{j}+10 \%)$	1899178	1539197	1429744
o) Контейнеры для безопасного хранения отходов [($\mathrm{m}+$ n) +100$]+10 \%$)	52544	43077	42552

* Резервный запас должен постоянно подлерживаться на уровне 25% от обшего количества. В заказе на поставку оборудования по первому году должен быть предусмотрен резервный запас; в последуюшие годы расчет необходимого резервного запаса производится с учетом разницы между ожидаемыми объемами практического использования (включая прирост численности целевой группы населения) и оставшимся резервным запасом.
** Неизбежные отходы на уровне 10% представляют собой отправную величину; странам следует уточнить фактор неизбежных отходов на основании опьта реализации программной деятельности и внести соответствуюшие коррективы в имеюшиеся расчеты.

После окончания расчетов потребности в предохранительном оборудовании по каждой вакцине по национальному календарю прививок соответствующие общие данные должны быть подытожены в сводной таблице, конкретный вариант которой представлен в виде табл. 2.

Таблица 2. Типовой расчет СУММАРНОГО объема расходных материалов, необходимых для обеспечения безопасности инъекций по всем типам вакцин
(Примечание: по каждому изделию следует суммировать числа, полученные по всем типам вакцин, например, для определения необходимого суммарного количества нужио сложить итоговые данные, приведенные в табл. I и в ее повторных вариантах)

Излелие (кол-во)	2002 г.	2003 г.	2004 г.
Всего СР-шприцев (0.05 мл для БЦЖ)	959181	792283	812883
Всего СР-шприцев (0.5 мл для всех остальных вакцин)	5541932	4577635	4696654
Всего шприцев для восстановления готовых форм (одноразовых на 5 мл)	2200840	1788370	1684298
Всего контейнеров для безопасного хранения отходов	104567	86048	86629

[^3]И, наконец, следуюшим шагом после того, как определены обшие объемы необходимого предохранительного оборудования, является расчет затрат, конкретный пример которых представлен в табл. 3, а расчет объема складских помещений - в табл. 4.

Таблица 3. Типовой расчет суммарных затрат* на приобретение расходных материалов для обеспечения безопасности инъекций (по всем типам вакцин)
(Примечание: по каждому изделию следует перемножить итоговые данньее, приведеннье в табл. 2, на стоимость каждой единиьь инструментария)

Излелие (стоимость в долл. СІІА)	2002 г.	2003 г.	2004 г.
Всего СР-шприцев (0.05 мл для БЦЖ) - 0.06 долл. СШІА за 1 шт.	5751	47537	48773
Всего СР-шприцев (0.5 мл для всех остальных вакцин) - 0.06 долл. СШІА за 1 шт.	332516	274658	281799
Всего шприцев для восстановления готовых форм (одноразовых на 5 мл) - 0.05 долл. США за 1 шт.	110042	89418	84215
Всего контейнеров для безопасного хранения отходов - 1.00 долл. СШІА за 1 шт.	104567	86048	86629
Итого	604676	497661	501416

* Примечание: стоимость может меняться, особенно если есть возможность закупать расходные материалы, выпускаемые местной промышленностью (как правило, продукция местных предприятий значительно дешевле).

Таблица 4. Типовой расчет объема складских помешений, необходимых для хранения шприцев и предохранительных контейнеров

(Примечание: конкретные объемь могут меняться в зависимости от типа и завода-изготовителя заказываемого оборудования - эти данные приведень лииь в качестве примера)

Изделие (объем, м)	2002 г.	2003 г.	2004 г.
Общий объем под СР-шприцы (0.05 мл для БЦЖ)*	$58 \mathrm{~m}^{3}$	$47 \mathrm{~m}^{3}$	$49 \mathrm{~m}^{3}$
Общий объем под СР-ппприцы (0.5 мл для всех остальных вакцин)*	$333 \mathrm{~m}^{3}$	$275 \mathrm{~m}^{3}$	$282 \mathrm{~m}^{3}$
Общий объем под шприцы для восстановления готовых форм (одноразовые на 5 мл)**	$146 \mathrm{~m}^{3}$	$119 \mathrm{~m}^{3}$	$112 \mathrm{~m}^{3}$
Общий объем под контейнеры для безопасного хранения отходов***	$84 \mathrm{~m}^{3}$	$69 \mathrm{~m}^{3}$	$69 \mathrm{~m}^{3}$
Всего	$621 \mathrm{~m}^{3}$	$510 \mathrm{~m}^{3}$	$512 \mathrm{~m}^{3}$

* 100 СР-шприцев (0.05 мл или 0.5 мл) $=0.006$ м 3
** 1600 шприцев для восстановления готовых форм (5 мл) $=0.106$ м 3
*** 25 контейнеров для безопасного хранения отходов $=0.02$ м 3
Во всех медицинских учреждениях в целях бесперебойного снабжения необходимым оборудованием для безопасности инъекций должна быть создана эффективная система управления запасами, включая распределительный центр. На национальном, областном и районом уровне следует составлять статистические электронные таблицы, чтобы иметь полное представление о порядке распределения поступающего оборудования и гарантировать правильную доставку грузов по месту их назначения.

5. Выделение достаточных финансовых средств

EСжегодный план работы по безопасности инъекций должен включать в себя годовой бюджет с указанием постатейной сметной стоимости следующих позиций:
\square закупка СР-шприцев и контейнеров для безопасного хранения отходов;
\square закупка оборудования для удаления отходов и затраты на строительство;техническое обслуживание и эксплуатация систем для удаления отходов (например, эксплуатационные расходы);обучение и подготовка кадров;проведение разъяснительной работы;проведение оценки и мониторинга.
При выделении странами/организациями-донорами и другими учреждениями финансовых средств на приобретение вакцин и СР-пприцев следует учитывать затраты, необходимые для безопасного удаления отработанного инъекционного оборудования.

6. Безопасное удаление использованного инъекционного инструментария

Bцелях предупреждения риска распространения инфекции неотъемлемой составляющей любой программы вакцинопрофилактики является безопасное удаление использованных игл и шприцев. Чтобы не допустить случаев инфицирования среди своих коллег, других категорий медперсонала и населения, сразу после введения вакцины вакцинаторы обязаны поместить использованные иглы и шприцы в предохранительные контейнеры, тшательно заклеить клейкой лентой практически наполненный (примерно на $3 / 4$ объема) контейнер и хранить его в надежном месте вплоть до надлежащего удаления последнего. Во избежание риска профессионального травматизма предохранительные контейнеры не должны переполняться.

Для безопасного удаления использованного инъекционного оборудования не существует какого-либо идеального «основного» метода. В рамках отдельно взятой программы иммунизации должна быть проанализирована специфика местных условий и найдены приемлемые варианты решения проблемы удаления отходов. Всякий отобранный метод удаления отходов должен соответствовать требованиям национального и территориального природоохранного законодательства. В табл. 5 в матричном формате с учетом критериев экологической целесообразности и технической сложности/

материальных затрат кратко изложены разные варианты удаления отходов, которые образуются в ходе мероприятий по иммунизации.

Контейнеры для безопасного хранения отходов (именуемые также как «контейнеры для острого/колющего инструментария») обладают такими свойствами, как проколостойкость и водонепроницаемость, и предназначены для безопасного и удобного удаления использованных шприцев и игл, в том числе и других загрязненных острых изделий. В верхней части контейнера предусмотрено отверстие, размер которого позволяет свободно опускать в него иглы и шприцы, однако это отверстие не настолько большое, чтобы рука вакцинатора могла случайно наткнуться на шприцы и иглы внутри контейнера. Контейнеры для острого инструментария подлежат лишь однократной загрузке отходами на $3 / 4$ объема, после чего их следует сразу же уничтожить. При постоянном и надлежащем использовании таких предохранительных контейнеров удается предотвращать распространение заболеваний, возникающих вследствие случайных травм от укола

Загрузка отходами на $3 / 4$ объема иглой. ${ }^{5}$

Таблица 5. Матрица отображения экологической целесообразности и технической сложности/материальных затрат, связанных с разными вариантами удаления отходов, образуюшихся в результате проведения мероприятий по иммунизации

Техническая сложность / материальные затраты

		Простая технология/ низкие затраты	Сложная технология/ высокие затраты
	Сгорание отходов	Сгорание ($<400^{\circ} \mathrm{C}$) 1) Сгорание отходов в яме 2) Сгорание в бочке или кирпичной печи Мусоросжигание при средних температурах ($800-1000^{\circ} \mathrm{C}$)	Мусоросжигание при высоких температурах $\left(>1000^{\circ} \mathrm{C}\right)$
	Другая технология	Захоронение отходов в яме/герметизация Ручные резаки для измельчения игл и штрицев**	Стерилизация паром (авто- или гидроклавирование) и облучение в СВЧ-диапазоне** Плавление Иглосъемники/иглорезаки с механическим приводом

** Может потребоваться дополнительная обработка для безопасного окончательного удаления.
В настоящее время имеется три широко распространенных и готовых для применения варианта безопасного удаления отработанного инъекционного оборудования:

[^4]захоронение/герметизация; сгорание; и мусоросжигание. В некоторых странах также практикуются и такие другие методы обезвреживания отходов, как автоклавирование/ дробление, отсоединение/утилизация игл. В табл. 6 дается сравнительная характеристика достоинств и недостатков разных вариантов обработки/удаления отходов.
Таблица 6. Сравнительная оценка различных методов обработки и удаления отходов, связанных с иммунизацией

Метод	Достоинства	Недостатки
Захоронение отходов в яме/герметизация отходов путем цементирования или иммобилизации с использованием других материалов (песка, строительного гипса)	- Простой - Дешевый - Не требует использования высоких технологий - Исключает небезопасное повторное использование игл и ттприцев - Предотврашает инфицирование/случайные травмы от пореза/укола иглой у специалистов по обработке/удалению отходов	- Вероятность неполного захоронения (особенно если яму засыпают грунтом, а сами отходы не герметизируют) - Уменьшение объема не происходит - Отсутствует дезинфекция отходов - Быстрое наполнение ямы в период массовыхх кампаний - Не рекомендуется при захоронении заразннх отходов, не относящихся к острым или колюшим изделиям - Представляет опасность для населения при нарушгнии правил надлежашего захоронения - Неприемлемы в местах, где выпадает обильное количество осадков, или где уровень подземных вод расположен близко к поверхности земли
Сторание ($<400^{\circ} \mathrm{C}$) - Сгорание отходов в яме - Сгорание в бочке или кирппчной печи	- Относительно дешевый - Уменышение отходов в объеме - Сокрашение количества инфекционннг материалов] Неполное сгорание - Не исключены случаи недостаточно эффективной стерилизации Образование густого дыма и потенииальная опасность возникновения пожара Для растопки может понадобиться горючее или сухие отходы [. Токсичные атмосферные выбросы (в частности, тяжелые металлы, диоксины, фураны, летучая зола), концентрация которых может превышать значения, допустимые природоохранным или медико-санитарньм законодательством - Образование вредной для здоровья золы, содержашей вышелачиваемые металлы, диоксины и фураны - В Вероятность случайннх травм от укола иглой, поскольку уничтожение игл не обеспечивается
Мусоросжигание при средних температурах ($800-1000^{\circ} \mathrm{C}$)	- Менее дорогостоящие по сравнению с высокотемпературньми мусоросжигательными установками - Уменышение отходов в объеме - Сокрашение количества инфекционннгх материалов	- Неполное сгорание Вероятность образования густого дыгма Для растопки и поддержания температуры на высоком уровне может понадобиться горючее или сухие отходы Необходим квалифицированннй персонал по эксплуатации установки Вероятность поступления в атмосферу токсичных загрязнителей в относительно небольшом количестве (в частности, тяжелых металлов, диоксинов, фуранов, летучей золы), концентрашия которых может превыпшть значения, допустимые природоохранным или медико-санитарным законодательством в пределах конкретной территории - Образование вредной для здоровья золы, содержашей неустойчивые концентрации вьпцелачиваемьгх металлов, диоксинов и фуранов - Beроятность случайнъгх травм от укола иглой, поскольку отдельные иглы могут быть не уничтожены - Нуждается в постоянном присмотре в процессе эксплуатации и регулярньх регламентннгх работах в течение года

Мусоросжигание при высоких температурах ($>1000^{\circ} \mathrm{C}$)	- Практически полное сжигание и стерилизация использованного инъекционного оборудования - Дополнительное уменьшение количества токсичных выбросов в атмосферу, если смонтировано оборудование по контролю уровня загрязнения - Значительное сокращение об̄ъема отходов, связанных с иммунизацией	Большие расходы на строительство, эксплуатацию и техобслуживание Необходимость в электроснабжении, поставках горючего и наличии квалифицированного персонала для эксплуатации - При отсутствии оборудования по контролю уровня загрязнения не исключена вероятность образования токсичных атмосферных выбросов (в частности, металлов, диоксинов, фуранов, летучей золы) - Не исключена вероятность образования вредной для здоровья золы, содержащей неустойчивые концентрации вышелачиваемых металлов, диоксинов и фуранов
Отсоединение игл/уничтожение игл (Среди действуюиих изделий имеются простьte руиные устройства ити работаюиие от аккумуляторной батареи, а такэе более сложное оборудование с электроприводом)	- Исключается вероятность повторного использования игл Уменышение риска профессионального травматизма среди специалистов по обработке и удалению отходов - В отдельных случаях после обработки возможно повторное использование отходов из пластмассы в других шелях - Доступность ручных устройств или приспособлений, работаюших от аккумуляторной батареи	- Разбрызгивание жидкости может привести к загрязнению рабочей зоны и/или одежды оператора - $\quad \mathrm{B}$ отдельньх случаях не исключена вероятность передачи инфекции при разбрызгивании жидкости и маниптуляциях с использованнњпми иглами - В отдельных случаях перед удалением использованных игл/шприцев требуется их дополнительная обработка - Параметры безопасности не установлены
Плавление шприцев	- З Зачительное сокращение объема отходов, связанных с иммунизацией - Исключается вероятность повторного использования	- Поступление в атмосферу потенциально токсичньхх газов Необходимость в электроснабжении Параметры безопасности не установлены
Паровая стерилизация (автоили гидроклавирование), облучение в СВЧ-диапазоне (наряду с дроблением)	- Успешно используются уже в течение многих десятилетий для обработки острых/колюших и медицинских отходов, не связанннгх с иммунизацией (сотрудники больниц могут иметь представление о технологии автоклавирования) - Широкий выбор изделий (от простых до технически сложннг) и производственньх мошностей - Обеспечивается стерилизация отработанного инъекционного оборудования - По сравнению с горением или сжиганием образуется меньшее количество вредных атмосферных выбросов (не содержаших диоксины или тяжелые металлы) - Сокрашение объема отходов при исполъзовании дробилки - После сортировки отходов возможно повторное использование пластмассы в друтих целях	[. Высокий уровень капитальных затрат (которые могут быть ниже расходов на эксплуатацию высокотемпературных мусоросжигательньх установок, снабженньх аппаратурой по контролю уровня загрязнения) - Необходимость в электро- и водоснабжении [В Высокие эксплуатационные затраты - Болышие затраты на техобслуживание и ремонт - Возможно образование летучих органических соединений в виде пара в процессе разгерметизации и открытия створки рабочей камеры - Требуется дополнительная обработка во избежание повторного использования (в частности, дробление) - Образовавшиеся в результате стерилизации отходы по-прежнему подлежат удалению

6.1 Принятые на современном этапе большинством стран методы решения проблемы удаления отходов, связанных с иммунизацией

6.1.1 Захоронение/герметизация отходов

В сельских районах, где подземные воды находятся на достаточной глубине, и проблема с количеством отходов не стоит так остро, вполне приемлемым промежуточным методом удаления отходов является их захоронение/герметизация. Эти методы относятся к разряду довольно простых, мало затратных, безопасных и экологически приемлемых.

Неболышие лечебно-профилактические учреждения, в процессе деятельности которых образуются незначительные объемы медицинских отходов, могут остановить свой выбор на таком методе, как захоронение отходов в ямах. При этом донная часть таких ям должна быть на 1.5 м выше зеркала грунтовых вод. Глубина ям должны быть в пределах от 3 до 5 м, а их ширина - примерно 2 m . Для выстилки ям следует использовать такой материал, как глина, которая известна своей низкой проницаемостью. Чтобы предотвратить проникновение поверхностных вод в зону ямы с отходами, вокруг нее принято обустраивать земляной вал. Во избежание несанкционированного доступа яма должна быть надежно ограждена от проникновения посторонних лиц. При выкапывании ям для захоронения отходов следует проявлять осторожность и принимать соответствующие меры, заблаговременно позаботившиись о том, чтобы этим занимался компетентный персонал, причем так, чтобы не было несчастных случаев вследствие обрушения откосов ямы.

В ямы для захоронения отходов можно помещать наполненные предохранительные контейнеры, а также золу, оставшшуюся после сгорания или сжигания отходов (см. ниже по тексту). Каждый слой сваленных отходов принято засыпать землей. По мере заполнения ямы ее следует окончательно изолировать с помощью цементной стяжки и забетонировать указатель, предупреждаюший о том, что в этом месте дальнейшие земляные строительные работы не допускаются.

В целом, метод захоронения отходов в ямы является приемлемым для неболыних медицинских учреждений, где объемы использованного инъекционного оборудования невелики. Вместе с тем, из-за огромного количества отработанного инструментария, накапливаюшегося в процессе проведения массовых прививочных кампаний, ямы для захоронения отходов нельзя считать идеальным вариантом решения данной проблемы.

Герметизация представляет собой перенос наполненных отходами предохранительных контейнеров в бетонные резервуары или хранилища из высокопрочной пластмассы или в металлические бочки. По мере заполнения перечисленных емкостей делается стяжка из таких фиксирующих материалов, как пенопласт, песок, цемент или глина. После высыхания названных материалов эти емкости герметизируют и перевозят на мусорную свалку, а если они обустроены в земле, то их оставляют на месте.

Основные преимущества герметизации заключаются в том, что этот процесс не связан с болыними расходами, не является высоко технологичным, но одновременно весьма эффективен в плане снижения риска, которому подвергаются специалисты по обработке потенциально опасных отходов, связанных с иммунизацией. Как и в случае с захоронением отходов в ямы, серьезный недостаток этого метода состоит в том, что связанные с иммунизацией отходы остаются потенциально заразными. В отдельных случаях для уменышения опасности инфицирования до начала или одновременно с герметизацией отходов можно провести их химическую обработку или дезинфекцию.

Герметизация отходов представляется безопасной лишь при условии надлежашего обращения с отходами, включая их транспортировку, а также при соблюдении стандартных правил техники безопасности при работе с цементом и другими фиксирующими материалами. Процесс планирования позволяет определить размеры траншеи на основании количества отходов, образовавшихся за определенный период. Кроме того, необходимо предусмотреть отдельный участок для безопасного хранения накапливающихся отходов.

Герметизация отходов путем цементирования предполагает проведение следующих работ: (1) рытье достаточно просторной траншеи для свалки образующихся отходов; (2) выстилка донной части траншеи цементной стяжкой и выдержка последней для затвердевания; (3) аккуратное сбрасывание отходов в траншею; (4) полная заливка отходов цементным раствором; (5) после затвердевания цементной смеси поверх ее следует насыпать грунт толщиной примерно 15 cm . Типичный состав цементной смеси включает в себя 1 часть цемента; 1 часть извести; 4 части песка; от $1 / 3$ до $\frac{1}{2}$ части воды. В идеальной ситуации дно траншеи должно находиться примерно на 1.5 метра выше горизонта грунтовых вод. Сведения о глубине залегания зеркала грунтовых вод на конкретной территории можно получить, обратившшись в водохозяйственные органы.

Герметизация цементной смесью

6.1.2 Низкотемпературное горение

Использованное инъекıионное оборудование вполне поддается сгоранию при относительно невысоких температурах ($<400^{\circ} \mathrm{C}$) в открытых приямках, топках с кирпичной футеровкой или металлических бочках. Такие приспособления не требуют значительных расходов, а их монтаж и техобслуживание не является обременительным. И все же, в результате горения при низких температурах не удается добиться ни полного сжигания, ни уничтожения использованных игл и пшприцев, равно как и не гарантируется их стерилизация. К другим недостаткам можно отнести опасность возникновения пожара, задымление и выброс токсичных загрязнителей, образование вредной для здоровья золы и сохранение риска причинения случайных травм от укола иглой.

Несомненно, что с учетом всех этих недостатков низкотемпературное сгорание не может быть идеальным перспективным решением проблемы безопасного удаления отходов в ходе реализации программ вакцинопрофилактики. По мере возможности такой метод удаления отходов, как их захоронение/герметизация, нередко представляется более приемлемым вариантом для сельских медицинских учреждений. С другой стороны, низкотемпературное сгорание отходов может оказаться вполне целесообразным и практически приемлемым краткосрочным подходом к обеспечению безопасного удаления игл и ппприцев, использованных либо во время массовых прививочных кампаний, либо в

процессе работы неболыших сельских учреждений здравоохранения. Вместе с тем, существует вполне реальная опасность того, что любые временные варианты решения упомянутой проблемы (как, например, низкотемпературное сгорание) нередко превращаются в устойчивую практику.

Процесс горения в металлической бочке или в обложенной кирпичом топке представляется предпочтительным вариантом низкотемпературного сгорания отработанного инъекционного инструментария. Конкретное место для сгорания отходов должно находиться на свободном участке как можно дальше от жилых зданий и построек, причем эта территория должна быть огорожена и расчищена. В целях ускорения горения при загрузке в металлические бочки контейнеров с отходами между ними прокладывают бумагу, опавшую листву и другие легковоспламеняюшиеся материалы, а поверх бочки устанавливают мелкоячеистый металлический экран, чтобы уменышить количество зольных выбросов.

В бочке огонь должен гореть до тех пора, пока не будут уничтожены все загруженные туда контейнеры. Как только пламя погаснет, а на дне бочки остынет зольный остаток, его необходимо осторожно собрать и захоронить (на глубине не менее 13 см от поверхности земли), причем, по мере возможности, наполненная такими остатками яма должна быть герметично залита цементным раствором.

Яма для сгорания отходов должна быть около 1-2 метров в диаметре и примерно 1 метр по глубине, а место для ее обустройства должно находиться на расстоянии не менее 50 метров от каких-либо жилых зданий или построек. Наполненные отходами предохранительные контейнеры и пакеты с пустыми, поломанными флаконами из-под вакцины следует сжигать в яме (разрушение пустых флаконов из-под вакцины необходимо для предотвращения их взрыва во время горения).

Бочка для сгорания отходов

Чтобы разжечь огонь, можно подложить бумагу, сухие листья, древесину и/или подлить горючее. По окончанию горения такие ямы должны быть завалены слоем земли или забетонированы, а по мере возможности - огорожены забором, чтобы исключить

вероятность проникновения на эту территорию уборииков мусора, местной детворы и других лиц.

6.1.3 Сжигание отходов при средних и высоких температурах

Сжигание отходов при средних ($800-1000^{\circ} \mathrm{C}$) и высоких ($>1000^{\circ} \mathrm{C}$) температурах определяется как горение, при котором уменышается количество сгораемых отходов за счет их превращения в негорючий материал, а также заметно снижается объем и вес самих отходов. В отличие от низкотемпературного горения, в результате сжигания отходов достигается эффект более полного сгорания и стерилизации использованных игл и шприцев. Тем не менее, при сжигании отходов все же имеют место выбросы таких токсичных загрязнителей, как тяжелые металлы, диоксины, фуран и летучая зола. Дорогостояшую аппаратуру по контролю уровня загрязнения окружаюшей среды, позволяюшую предотврашать выбросы названных загрязняюших вешеств, как правило, принято монтировать лишь на высокотемпературных мусоросжигательных установках. Необходимо не только проявлять осторожность при обращении с остаточной золой и отходами, которые образуются после сжигания мусора (тем более что в мусоросжигательных установках, где процесс горения проходит при средних температурах, уничтожение игл может быть неполным), но и тщательно захоронить отходы, а в идеальном случае и герметизировать их, чтобы не допустить выщелачивания токсичных веществ.

В целях обеспечения правильной эксплуатации мусоросжигательных установок нужен высококвалифицированный и заинтересованный в работе персонал. Очень важно понимать, что без соблюдения правил эксплуатации и техобслуживания мусоросжигательные установки работать не будут. При планировании ежегодных бюджетов на мероприятия по иммунизации следует выделять средства на эксплуатацию, техобслуживание и ремонт мусоросжигательных установок, в том числе на закупку горючего, если это необходимо.

Установки для сжигания медицинских отходов бывают нескольких типов, начиная от технически сложного, крупного промьшленного оборудования, оснащенного аппаратурой комплексного контроля уровня загрязнения окружающей среды, и кончая базовыми, относительно дешевыми и автономно работающими печами для сжигания отходов, монтаж и эксплуатация которых осуществляется на районном и периферийном уровнях (например, SICIM, de Montfort, Medicin 400). (Технические характеристики этих установок приведены в Приложениях к этому документу). Цена соответствующих, не относящихся к высоким технологиям печей для сжигания отходов при средних температурах колеблется в пределах от 1 тыс. до свыше 5 тыс. долл. CIII. Высокотемпературные мусоросжигательные установки, оборудованные регуляторами температурного режима и многими топочными камерами, стоят 150 тыс. долл. СІІА или более, причем они обходятся еще дороже, если в комплект поставки входит аппаратура контроля уровня загрязнения, который должен соответствовать международным экологическим нормативам.

Удельные затраты на сжигание одного шприца варьируются в широких пределах и находятся в прямой зависимости от количества накапливающихся отходов. Чем чаще эксплуатируется мусоросжигательная установка, тем ниже затраты на удаление одного отработанного піприца. Судя по итогам исследований в странах, в рамках которых были учтены все слагаемые затрат на организацию удаления отходов с помощью мусоросжигательных печей, работаюших на средних температурах, можно утверждать, что удельные затраты на удаление одного шшрица при оказании лишь рутинного медицинского обслуживания составляют 0.08 долл. СІІІА, тогда как такие издержки

применительно к удалению повседневных медицинских отходов и отходов от проведения прививочных кампаний снижаются до 0.02 долл. CIIIA.

Эксплуатация мусоросжигательной установки на уровне периферийного медицинского учреждения, скорее всего, окажется невыгодной ввиду стоимости и мощности современных печей для сжигания отходов. Следует самым тщательным образом выбирать участок для монтажа мусоросжигательных установок как с точки зрения оптимизации их использования (т.е. в зависимости от объема накапливающихся отходов может оказаться приемлемой эксплуатация одной и той же установки, обслуживающей одновременно несколько территорий или медицинских учреждений), так и с позиции минимизации факторов риска здоровью вследствие воздействия токсичных атмосферных выбросов на состояние здоровья местного населения.

Решение данной проблемы, которое во многих странах оказалось не только практичньм, но и эффективным, сводится к удалению использованных игл и шприцев на районном уровне, причем как в связи с проведением плановой иммунизации, так и массовых прививочных кампаний. Обеспечивается сбор инъекционного оборудования, которое использовалось медицинскими центрами и мобильными бригадами, и его доставка в районное медицинское учреждение, в распоряжении которого имеется устойчиво работающая мусоросжигательная установка или централизованный автоклав/дробилка по удалению отходов. В целях создания благоприятных условий для сбора отходов в некоторых странах практикуется «стратегия обмена», согласно которой новые поставки игл, шприцев и предохранительных контейнеров выдают в обмен на наполненные отходами предохранительные контейнеры (рис. 2).

Типы мусоросжигательных установок для удаления использованных шприцев/игл и других медицинских отходов

			ка снаб я уров	тпаратур знения*	
DE MONTFORT (местное производство)	SICIM (импортная установка)	VULCAIN (импортная установка)	*MAN Печъ отходо	TURERS игания таюшая	*MANUFACTURERS Печь для сжигания отходов с двойной
Мусоросжигательная печь с двойной топочной камерой (кирпичная кладка, розжиг путем сжигания керосина/древесины)	Печь для самосгорания отходов (нержавеюшая сталь)	Печь для сжигания отходов с воздушным дутъем (нержавеюшая сталь + кирпичная кладка)	$\begin{array}{r} \text { на } \\ \text { топл } \\ \text { (нерж } \\ + \text { + кирг } \end{array}$	шносмеси ая сталь кладка)	топочной камерой и фильтрацией, работаюшая на воздушно-топливной смеси (нержавеюшая сталь + кирпичная кладка)
1000 долл. СШША	2500 долл. США	5 тыс. долл. США		л. США	50 тыс. долл. США и более
Районный урове		иториальный	ень	Наци	ьний уровень
*Целесообразность монтажа аппаратуры контроля уровня загрязнения определяется требованиями природоохран законодательства.	ного				

Печь местного производства для сжигания отходов и ее оператор

Мусоросжигательная печь SICIM

Рис. 2.
Схема последоватетьности действий и реализация «стратегии обмена» по сбору и удалению использованных ппприцев и игл на уровне областного учреждения

6.2 Варианты решения проблемы удаления отходов, связанных с иммунизацией, которые предлагаются на будущее

6.2.1 Отсоединение игл и их дробление

Отсоединение иглы от пाприца (или его «обезоруживание») на месте их использования позволяет немедленно изолировать потенциально загрязненные иглы для дальнейшего хранения последних в надежном контейнере. Благодаря соблюдению этого принципа обеспечивается выполнение следующих задач: уменышается потребность в свободной емкости внутри контейнера для безопасного хранения отходов; предотвращается риск причинения случайной травмы от укола иглой; и исключается вероятность повторного использования шприца с иглой. На практике применяются иглосъемники/иглорезаки разных типов, начиная от ручных приспособлений и заканчивая моделями, работающими от аккумулятора или с механическим приводом.

С помошью ручных моделей производится отрезка или снятие игл со шприцев, чтобы привести их в негодность. Образуюшиеся таким образом отходы состоят из загрязненных игл, которые следует складывать в одноразовый или многоразовый контейнер, и шприцев без игл, подлежащих удалению в контейнер для безопасного хранения отходов. Конструкция некоторых моделей предполагает не только снятие игл, но и дезинфекцию емкости для игл, а также наличие на завершающем этапе гильотинных ножниц. Если при этом правила техники безопасности не соблюдаются, то в процессе удаления отходов медработник подвергается опасности причинения случайной травмы от укола иглой.

Модели с механическим приводом обходятся дороже, требуют наличия эксплуатационного персонала с более высоким уровнем квалификации и, естественно, их бесперебойная работа зависит от регулярного энергоснабжения. Такое оборудование позволяет собрать в одноразовую тару незагрязненные отходы, среди которых уже нет острых предметов, однако при его эксплуатации могут происходить выбросы в виде искр и дыма; к тому же требуется проведение регулярных регламентных работ, включая поставки фирменных запчастей. Продолжается работа по оценке таких технологий по снятию игл со шприцев/дроблению игл, которые не нуждаются в электропитании и не ассоциируются с потенциальным риском инфицирования/контаминации вследствие разбрызгивания жидкости. Кроме того, необходимо будет также провести оценку принципов организации программной деятельности.

6.2.. 2 Плавление

С помощью печей промышленного типа можно перерабатывать использованные иглы и ıпприцы при высоких температурах, обеспечивая тем самым плавление и дезинфекцию ıпприцев. Несмотря на то, что сами иглы не переходят в расплав, осуществляется их обеззараживание и герметизация в среде расплавленного пластика, и они уже не представляют никакой опасности в плане передачи инфекции или причинения случайных травм. Образовавшуюся таким образом массу из расплава пластика со стерильными иглами можно в дальнейшем захоронить или отвезти на мусорную свалку.

Главная проблема при реализации данной системы удаления отходов заключается в относительно высоких затратах. Более того, в процессе термообработки не исключена вероятность образования ядовитых газов. Специалисты ВОЗ не анализировали вопросы использования печей для плавления шприцев, равно как и не выступали со своими рекомендациями на этот счет, поскольку работы по оценке данной технологии еще не закончены.

6.2.3 Стерилизация паром (авто- и гидроклавирование) и облучение в СВЧ-диапазоне

Автоклавы регулярно используются в лечебных учреждениях для стерилизации медицинского инструментария и представляют собой надежный метод стерилизации и обработки использованного инъекционного оборудования без причинения какого-либо ущерба окружающей среде.

При автоклавировании для дезинфекции отходов используется пар, причем эффект обеззараживания достигается посредством сочетания достаточно высокой температуры и времени экспозиции. Наиболее распространенная действующая система обеспечивает обработку паром при температуре $121^{\circ} \mathrm{C}$ в течение 30 минут. Для контроля должного пропаривания могут использоваться биологические индикаторы или индикаторы, изменяюшие цвет, которые помешают вместе с загружаемыми отходами.

При температуре автоклавирования в районе $140^{\circ} \mathrm{C}$ или выше многие изделия из пластика размягчаются и образуют аморфную массу из отходов. Чтобы гарантировать физическое разрушение острых/колющих предметов, подвергнутые автоклавированию отходы загружают в дробилку или мельницу, благодаря действию которых объем отходов уменышается на $60-80 \%$. Стерильные отходы можно без всякого риска использовать для утилизации или рециркуляции в других областях применения, захоронить или, не нарушая правил техники безопасности, отвезти на городскую свалку. Данный метод удаления отходов, связанных с иммунизацией, позволяет исключить образование дыма, твердых частиц или токсичных газов.

Автоклав с дробилкой

Автоклавы могут быть разных размеров, начиная от неболыших агрегатов, смонтированных непосредственно в учреждении, и кончая довольно крупными установками, эксплуатация которых осуществляется на укрупненных предприятиях по переработке отходов. Если используется автоклав, установленный в учреждении областного подчинения, то для сбора отходов в районных учреждениях необходимо тщательно спланировать работу системы их транспортировки. На этот случай уместной представляется реализация «стратегии обмена», согласно которой новые поставки игл, шприцев и предохранительных контейнеров выдают в обмен на контейнеры с отходами.

Автоклав с емкостью рабочей камеры до 250 л стоит примерно 25 тыс. долл. СІІА, тогда как большегрузный автоклав, куда за один цикл можно загрузить не менее 500 кг отходов, может стоить порядка 50 тыс. долл. СІІА. Другие, усовершенствованные типы автоклавов рассчитаны на непрерывную подачу отходов и их измельчение внутри камеры, а также на выполнение таких операций, как перемешивание, сушка и/или прессование отходов по окончании цикла обработки. Цена высокотехнологичного автоклава производительностью примерно 40-70 кг отходов в час колеблется в диапазоне от 47 до 70 тыс. долл. СЈIА.

Принципы работы гидроклава и автоклава аналогичны за исключением того, что в первом случае предусмотрена встроенная дробилка, и нередко такой агрегат полностью автоматизирован.

Эффекта паровой стерилизации можно также добиться путем облучения в СВЧ-диапазоне. После загрузки и герметизации отходов в рабочей камере их смачивают водой или пропаривают, а затем подвергают термообработке посредством микроволнового облучения до тех пор, пока не произойдет их обеззараживание. В дальнейшем, как и при автоклавировании, обработанные отходы измельчают, прессуют и удаляют в виде твердых отходов.

В условиях развивающихся стран очевидные недостатки применения автоклавов и микроволновых установок, предназначенных для удаления отходов, сводятся к их высокой стоимости, необходимости бесперебойного водо- и энергоснабжения, а также к тому, что такое оборудование является относительно высокотехнологичным. К тому же, в этом случае необходимо иметь подготовленные кадры операторов, постоянно заниматься решением вопросов технического обслуживания и ремонта, а также удалять получаемые стерильные отходы в соответствии с правилами удаления твердых отходов.

Тем не менее, немаловажные достоинства, о которых было сказано выше, наряду с возможным использованием таких агрегатов для безопасной обработки медицинских, не связанных с иммунизацией отходов, говорят в пользу того, что эти методы удаления отходов или другие не относящиеся к процессу горения методы могут представлять интерес для лиц, формулирующих политику при разработке долгосрочных планов организации удаления медицинских отходов.

Критерии и блок-схема принятия решений
НАЧАЛЬНЫЙ ЭТАП

7. Профессиональная подготовка медработников по безопасности инъекций

Πеред тем, как приступить к внедрению в практику СР-Іпприцев, крайне важно организовать подготовку кадров по безопасности инъекций и безопасному удалению отходов. Наряду с обучением вопросам снабжения вакцинами следует предусмотреть учебные мероприятия по мониторингу безопасности и поствакцинальных осложнений (ПВО) через организацию курсов для руководителей среднего звена, а также курсов повышения квалификации без отрыва от производства. В целях создания условий для межучрежденческого сотрудничества к проведению таких мероприятий следует приобщить неправительственные организации и частнопрактикующих специалистов. Более того, учебным заведениям необходимо пересмотреть свои учебные планы, включив в них аспекты безопасности инъекций для того, чтобы система преддипломной подготовки медицинских кадров соответствовала национальным стандартам безопасности практики введения инъекций.

В связи с организацией как плановых мероприятий, так и массовых кампаний к вопросам профессиональной подготовки медработников и организаторов здравоохранения можно отнести следующее (что, разумеется, не ограничивается перечисленной ниже тематикой):
\square Подготовка рабочего места и решение проблемы удаления отходов в щелях предупреждения случайных травм от укола иглой.
\square Правильное использование, как и предписано национальной политикой, СР-пппицев и контейнеров для безопасного хранения отходов (т.е. исключение из практики таких действий, как насаживание игольного колпачка на использованную иглу или задержки с удалением отработанных ппприцев).Надлежащее удаление и уничтожение использованного инструментария.
\square Точный расчет текущих потребностей и мониторинг наличных запасов.

КЛЮЧЕВЫЕ ОРИЕНТИРЫ ПРИ ПОДГОТОВКЕ КАДРОВ ПО ВОПРОСАМ БЕЗОПАСНОСТИ ИНЪЕКЦИЙ

Использование стерильного СР-шприца и иглы при вакıинации каждого ребенка.- Использование олноразового шприца и иглы для восстановления готовой формы любой вакцины.
- Профилактика контаминации инъекционного оборудования и самой вакцины.Подготовка каждой инъекции в специально отведенном для этого чистом помещении, где маловероятна контаминация кровью или биологическими жидкостями организма.
- Неизменное использование стерильной иглы для того, чтобы протыкать защитные перегородки многодозных флаконов.
- Использование при восстановлении готовой формы вакцины только лишь фирменных растворителей, предназначенных именно для данной вакцины. Исключается применение каких-либо иных растворителей.
- Игла не должна оставаться воткнутой в пробку флакона.
- Использование неболышой марлевой прокладки во избежание ранения палыцев при вскрытии ампул.
\square Выбрасывание иглы в отходы, если она случайно коснулась нестерильной поверхности (рук, посторонних предметов).
- Расчет на то, что во время и сразу после инъектии пациент может сделать резкое движение, ввиду чего требуется принятие соответствующих профилактических мер.
- Предупреждение случайных травм от укола иглой путем отказа от практики насаживания игольного колпачка на использованную иглу, а также путем удаления отработанных игл в контейнеры для безопасного хранения отходов.
\square Сбор использованных шприцев и игл по месту их применения в предохранительный контейнер, который подлежит герметизации по мере его наполнения (не следует перекладывать содержимое контейнеров в другую емкость или переполнять такие контейнеры).
- Герметичное закупоривание предохранительных контейнеров перед их транспортировкой в безопасное место. Их не следует открывать, опоражнивать или использовать повторно.
- Организация удаления отходов после введения инъекций эффективным и экологически приемлемым образом.
- Профилактика несчастных случаев среди персонала, занимающегося удалением отходов.
- Отказ от практики складывания пустых флаконов в предохранительный контейнер, поскольку при горении они могут взрываться.
- Использование предохранительных контейнеров исключительно для сбора потенциально загрязненного инъекционного инструментария. Не следует складывать в такие контейнеры пустые флаконы, ватные тампоны, мягкие повязки и т.п.

8. Вопросы курации и мониторинга

Πроведению регулярного мониторинга и контрольным посещениям учреждений на местах принадлежит важнейшая роль в деле обеспечения безопасной практики инъекций, куда входят вопросы организации удаления использованного инъекционного оборудования/материалов или удаления острого/колющего инструментария.

В связи как с плановыми мероприятиями по вакцинопрофилактике, так и с массовыми прививочными кампаниями представляется целесообразным контролировать выполнение следующих задач:

- Каждый прививочный пункт обеспечивают необходимым количеством CP -ішприцев, игл и контейнеров для безопасного хранения отходов.
- Мероприятия по иммунизации проводят безопасно и правильно.
- Предохранительные контейнеры компонуют надлежащим образом (т.е. надежно укупоривают их верхнюю часть).
- Использованные иглы и ипприцы безотлагательно удаляют в предохранительный контейнер и не насаживают игольный колпачок на иглу.
- Пустые флаконы из-под вакцины не выбрасывают в контейнеры для безопасного хранения отходов.
- Предохранительные контейнеры наполняют лишь до определенного уровня (т.е. примерно на $3 / 4$ объема; исключена такая ситуация, когда иглы уже не помещаются внутри контейнера) и надежно их закрывают.
\square Наполненные отходами предохранительные контейнеры не вскрывают, а их содержимое не пересыпают в другие емкости или другие контейнеры для безопасного хранения отходов.
- Наполненные отходами предохранительные контейнеры просто удаляют, соблюдая правила техники безопасности (например, обеспечивают их захоронение, сжигание и т.д.).

Чтобы уточнить направления работы по совершенствованию безопасной практики инъекций, немало полезньх уроков можно извлечь, оценивая результаты проведения прививочной кампании. Итоги состоявшейся оценки должны быть доведены до сведения медработников в целях неуклонного следования принципам соблюдения безопасности инъекций.
\square Обеспечивается надлежашее содержание и использование мест захоронения отходов, равно как и предназначенного для этого оборудования (например, печей для сжигания отходов, автоклавов и микроволновых установок).

Ввиду важности соблюдения требований безопасности инъекций национальным службам иммунизации рекомендовано выбрать несколько ключевых показателей по мониторингу качества проводимых мероприятий.

Ниже дается перечень показателей, которые можно было бы регулярно отслеживать и периодически оценивать.

- Безопасная практика инъекций:
- доля медицинских учреждений, во время контрольного посешения которых мероприятия по вацинопрофилактике проводились безопасно и правильно.
- Адекватность поставок шприцев и вакцин на уровне лечебно-профилактического учреждения:
- доля учреждений (районов), получающих адекватное количество (т.е.

соответствующее реальным потребностям или превышаюшее эти объемы) СРіпприцев для проведения всех плановых мероприятий по иммунизации на протяжении года (или квартала или другого установленного периода);

- периодичность поступления расходных материалов в каждое учреждение.
\square Удаление отработанного инъекционного инструментария:
- доля медицинских учреждений, имеюших адекватный запас предохранительных контейнеров;
- наличие соответствующих подходов к решению проблемы удаления отходов;
- отсутствие использованных ппприцев и игл в учреждении, а также на мусорных свалках в непосредственной близости от центра здоровья или возможное обнаружение таких отходов на городских свалках, не охраняемых от проникновения посторонних.
\square Наличие системы наблюдения за поствакцинальными осложнениями (ПВО).
Национальным программам по иммунизации настоятельно предлагается включать информацию о безопасности инъекций в регулярно заполняемые еженедельные или ежемесячные отчетные формы (т.е. в те отчеты, которые медицинское учреждение периодически направляет на районный уровень).

9. Пропаганда идеи безопасности инъекций

Cледует разработать стратегии проведения разъяснительной работы о важности безопасности инъекций, которые были бы ориентированы не только на руководителей служб вакцинопрофилактики, но и на руководство и должностных лиц в государственных органах, медработников и население в целом. Пропаганда идеи безопасности инъекций предполагает реализацию стратегии изменения стереотипов поведения как самих потребителей, так и медперсонала государственных и частных клиник, включая центры народной медицины.

Безопасность инъекций

Статистические данные об известных факторах риска и устоявшшейся практике могут сыграть полезную роль в том, чтобы убедить политиков и лиц, принимаюших решения, в актуальности постановки вопроса о безопасности инъекций. Возможно, такие данные имеются в наличии, особенно если оценка безопасности инъекций уже проводилась, а если же ее не было, то следует рассмотреть перспективы ее проведения.

Среди медработников следует также распространить простые сообщения о предстоящем переходе на использование СР-штрицев. Например:
\square «Вводим вакцину только иприцем новой конструкұии - или не вакцинируем совсем!»
\square «Если иприч не новый, то нам такой не нужен».

И, наконец, местное население должно быть информировано о доступности высококачественных служб вакцинопрофилактики, в распоряжении которых имеются безопасные и эффективные вакцины, вводимые с помощью надлежащего оборудования совершенно безопасным для здоровья образом. Такие сведения будут способствовать повышению уровня осведомленности населения и более четкому осознанию необходимости профилактических прививок.

Дополнительные рекомендации по проведению разъяснительной работы представлены в разделе со списком публикаций.

10. Безопасность инъекций при проведении массовых прививочных кампаний

Bсвязи с организацией массовых прививочных кампаний особую остроту приобретают проблемы обеспечения безопасности инъекций, поскольку целью таких кампаний является вакцинация за короткий период времени многих тысяч людей. Огромное количество использованного инъекционного инструментария, которое накапливается в ходе проведения кампании, может обусловить возникновение серьезных проблем с организацией удаления отходов, что, в свою очередь, повышает вероятность нарушения требований безопасности инъекций.

Хотя меры по безопасности инъекций мало чем отличаются от тех, которые предпринимаются при плановой иммунизации, прививочные кампании все же заслуживают пристального внимания. Обеспечению безопасности инъекций должно придаваться приоритетное значение в период любой массовой кампании, когда имеет место введение инъецируемых вакцин. Наличие безопасного оборудования и расходных материалов не исключает абсолютно все факторы риска. Важнейшим условием проведения массовой кампании в соответствии с требованиями безопасности является тщательное ее планирование и привлечение внимания к этому кругу вопросов всех, кто будет задействован в процессе вакцинации. Усилия по обеспечению безопасности инъекций в период массовых кампаний также позволят повышать уровень безопасности плановой иммунизации еше в течение продолжительного периода времени по завершению кампании (например, подготовка кадров, рытье ям для захоронения отходов, строительство мусоросжигательных установок).

Противокоревая прививочная кампания в Буркина Фасо

Контрольный перечень мероприятий по планированию безопасности инъекций на период массовых кампаний

Детальное планирование прививочньх кампаний в обязательном порядке предполагает следуюшее：
У Уточнение информации обо всех основных участвующих сторонах и партнерах．
Ø Планирование，выделение финансовых средств и размещение заказов на адекватные поставки всех необходимых изделий．
マ Проведение оценки ситуации，сложившейся за последнее время с безопасностью инъекций．
－Составление подробного бюджета с котировкой стоимости всех позиций оборудования， обеспечивающего безопасность инъекций．
च Планирование мероприятий по обучению персонала и подготовка информационных сообщений для СМИ．
О Ориентация на безопасность инъекций с самого начала прививочной кампании．
凹 Мониторинг，документальное оформление и распространение результатов．
च Анализ результатов и извлечение полезных уроков из практики．

Безопасное введение вакцин：

ஏ Использование вакıины и инъекıионных материалов，прошедших преквалификаıию экспертами ВОЗ／ЮНИСЕФ или одобренных на национальном уровне．
■ Соблюдение принципа групповой упаковки при распределении между прививочными пунктами вакцин в комплекте с соответствующим растворителем，шприцами для восстановления готовых форм，СР－Іाприцами и контейнерами для хранения отработанного острого／колющего инструментария．
\square Акцент на выполнение требований стерильности，а также правил восстановления готовых форм и безопасного введения инъекций．
\boxtimes Обучение медработников соответствующим техническим приемам．
Ø Обеспечение контролепригодности поставок вакцины по ее фирме－изготовителю и номеру серии．

Организация удаления отработанного острого／колюшего инструментария：

Ø Проведение оценки местного законодательства и допустимых нормативов по обработке и удалению острых／колюџих медицинских отходов．
マ Поиск практически приемлемых и простых вариантов решения проблемы сбора и удаления отходов．
\square Обязательное наличие производственных мощностей для удаления острых／колющих отходов и надлежащих предохранительных контейнеров．
ஏ Планирование работы по транспортировке，хранению и удалению отходов еще до начала массовой кампании．
Ø Доведение до сведения медработников четких инструкций и методических рекомендаций по удалению отходов．
च Повседневный мониторинг процесса удаления отходов．

Мониторинг и купирование ПВО：

『 Проведение оценки или создание системы мониторинга ПВО．
Поиск каналов для оперативной передачи отчетных данных．
》 Уточнение перечня ПВО，подлежащих включению в отчетные формы，а также списка отслеживаемых противопоказаний．
Ø Обучение медработников тому，как проводить расследования по поводу ПВО и купировать такие проявления，а также как реагировать на распространение слухов．
च Информирование основных участников прививочной кампании о том，почему она может способствовать утверждению мнений о повышении частоты возникновения ПВО．
凹 Планирование работы по распространению информационных сообщений о прививочной кампании для СМИ с учетом бытуюших на местах сомнений относительно гарантий безопасности．
\square Учреждение экспертной комиссии по оценке ПВО．
П Проявление бдительности ввиду возникновения «вопросов» и распространения слухов．

11. Актуальность данного вопроса для служб здравоохранения иного профиля

Cледует активизировать работу Комитета по безопасности инъекций (который, возможно, входит в структуру уже существующего комитета, в частности Межучрежденческого координационного комитета). В состав названного Комитета должны войти представители таких основных партнеров, как РПИ, ВОЗ, ЮНИСЕФ и других организаций, которые будут работать вместе как участники Глобальной сети по безопасности инъекций (ГСБИ). Следует также предпринять усилия ради того, чтобы подключить к этой деятельности представителей лечебно-профилактических служб, департамента гигиены окружающей среды и организаций-доноров. Членам Комитета следует поручить изучение данного вопроса и подготовку рекомендаций для Минздрава относительно возможных последствий от внедрения СР-пाприцев в рамках какой-нибудь одной программы по оказанию медико-санитарной помощи, тогда как все остальные службы здравоохранения будут по-прежнему пользоваться инъекционным оборудованием, не относящимся к категории саморазрушающегося.

Меры, предпринимаемые службами вакцинопрофилактики по обеспечению безопасности инъекций, могут служить образцом профилактики передающихся через кровь инфекций для подражания другими структурными подразделениями системы здравоохранения. Комитет по безопасности инъекций должен содействовать проведению мероприятий по обеспечению безопасности инъекций в работе всех служб, относящихся к системе медобслуживания населения. В нижеприведенной таблице представлено краткое описание мероприятий, которые предлагаются для осуществления различными программами.

Таблица 7. Роль, отводимая другим программам в области здравоохранения в деле пропаганды идеи безопасности инъекций

| Область программной деятельности | Роль в пропаганде безопасности инъекций |
| :--- | :--- | :--- |

12. Заключение

B

 для всех без исключения медработников, руководства и организаторов здравоохранения, но и для населения в целом. Несмотря на то, что использование в рамках программ иммунизации CP -ппприцев и контейнеров для безопасного хранения отходов позволит заметно уменышить риск передачи инфекций через кровь, только лишь благодаря внедрению этой технологии не удастся обеспечить безопасность вакцинопрофилактики. Помимо снабжения наллежашим оборудованием необходимо параллельно реализовывать такие процессы, как тщательное планирование, управление, обучение персонала и надзор за безопасным использованием и удалением СР-шприцев. В конечном итоге, тот опыт, который службам иммунизации удалось приобрести в обеспечении безопасности инъекций, должен быть растиражирован с тем, чтобы все инъекции, вводимые по медицинским показаниям, в том числе и в лечебно-профилактических целях, были бы безопасными, а удаление отработанного инъекционного инструментария осуществлялось бы не менее безопасным образом. вскцинопрофилактики, которьєе следуют надлелсамцей практике с точки зрения безопасности инъекиий и организспри удаления отходов, способнья гарантировать введение инъекций, не причиняюиих какого-либо вреда ти релитиенту, ти медработнику, ти населению.

Библиография и дополнительная литература

Документы и источники информации по вопросам безопасности инъекций, включая безопасное удаление отходов вакцинопрофилактики:

Общие вопросы:

Безопасность инъекций: Совместное заявление ВОЗ-ЮНИСЕФ-ЮНФПА об использовании иммунизационными службами саморазруиающихся иприцев. Женева, 1999
г. (неопубликованный документ WHO/V\&B/99.25; документ можно заказать через

Vaccines and Biologicals, World Health Organization, 1211 Geneva 27, Switzerland, а также ознакомиться с его содержанием через Интернет по адресу:
www.who.int/vaccines-documents/DocsPDF99/www9948.pdf).
Предлагаемые в рамках ГСБИ методики имеются в сети Интернет по адресу: www.injectionsafety.org.

Оценка и мониторинг:

Методика оценки безопасности инъекций. Женева, 2001 г. (неопубликованный документ WHO/V\&B/01.30 и WHO/BCT/01.02; документ можно заказать через Vaccines and Biologicals, World Health Organization, 1211 Geneva 27, Switzerland, а также ознакомиться c его содержанием через Интернет по адресу:
www.who.int/vaccines-documents/DocsPDF01/www576.pdf).

Расходные материалы:

Product information sheets, 2000 edition. Geneva, 2000 (неопубликованный документ WHO/V\&B/00.13; документ можно заказать через Vaccines and Biologicals, World Health Organization, 1211 Geneva 27, Switzerland, а также ознакомиться с его содержанием через Интернет по адресу:
www.who.int/vaccines-documents/DocsPDF00/www518.pdf).

Политика и планирование:

Памятка для разработки начиональной стратегии по безопасному и надлежащему использованию ииъекций. Документ имеется в сети Интернет по адресу: www.injectionsafety.org. Набор методик ГСБИ (1.1).

Safety of injections in immunization programmes: WHO recommended policy. Geneva, 1996 (неопубликованный документ WHO/EPI/LHIS/96.05 Rev.1; документ можно заказать через Vaccines and Biologicals, World Health Organization, 1211 Geneva 27, Switzerland, а также ознакомиться с его содержанием через Интернет по адресу:
www.who.int/vaccines-documents/DocsPDF/www9665.pdf). Набор методик ГСБИ (1.4).

Организация удаления отходов:

Options for waste disposal systems. Документ имеется в сети Интернет по адресу:
www.healthcarewaste.org.

Resource documentation on waste management. Документ имеется в сети Интернет по адресу: www.healthcarewaste.org.

Памятка для ноұиональной стратегии удаления медицинких отходов. Набор методик ГСБИ (1.2).

Подготовка кадров:

Giving safe injections: Using auto-disable syringes for immunization. Документ имеется в сети Интернет по адресу: www.path.org/resources/safe-inj-pdf.htm.

Safe management of wastes from health care activities. Документ имеется в сети Интернет по адресу: www.who.int/water_sanitation health/Environmental sanit/MHCWHanbook.htm.

Разъяснительная работа:

Creative brief: your guide to safe disposal. Набор методик ГСБИ (4.3).
Creative brief: always use a safety box. Набор методик ГСБИ (4.8).
Creative brief: safe waste management. Набор методик ГСБИ (4.10).

Массовые прививочные кампании:

Safety of mass immunization campaigns. WHO/V\&B/02.10.

Узлы $W W W$, обслуживаемые сервером ВОЗ:
V\&B (Вакцины и биологические препараты): www.vaccines.who.int ISPP (Приоритетный проект по безопасности иммунизации): www.who.int/vaccines-surveillance/ispp
SIGN (Глобальная сеть по безопасности инъекций): www.injectionsafety.org Environmental Health (Гигиена окружающей среды): www.healthcarewaste.org и www.who.int/water sanitation health/environmental sanit/health care waste.htm

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Department

of Vaccines and Biologicals

Безопасность массовых прививочных кампаний

Обеспечение безопасности в ходе проведения массовых прививочных кампаний при введении инъецируемых вакцин

В связи с организацией массовых прививочных кампаний особую остроту приобретают проблемы обеспечения безопасности инъекций, поскольку целью таких кампаний является вакцинация за короткое время многочисленных контингентов населения, которая зачастую не проводится в обычных условиях медицинского учреждения. К двум наиболее сложным проблемам можно отнести безопасность инъекций и поствакцинальные осложнения (ПВО). Говоря о безопасности инъекций, в первую очередь следует признать, что вследствие огромного числа инъекций и внушительного объема накапливающихся при этом медицинских отходов возникает дополнительная нагрузка на всю систему. Это повышает вероятность того, что в процессе обеспечения безопасности могут быть сбои. Во-вторых, в связи с ПВО может складываться впечатление о повышении частотности возникновения осложнений. Развитие ситуации в этом направлении обусловлено большим количеством вводимых доз вакцины за неболышой период времени, равно как и охватом многочисленной, как правило, более старшей по возрасту, группы населения.

Если профилактическая или организационная работа не проводится должным образом, то возможные проблемы с безопасностью инъекций могут обусловить распространение инфекций, поколебать уверенность общественности и учреждений-доноров в целесообразности проведения массовой кампании и, в конечном итоге, негативно повлиять не только на достижение высоких уровней охвата, но и на состояние здоровья населения. Тем не менее, с первых дней прививочной кампании все эти проблемы можно избежать, уделяя пристальное внимание аспектам безопасности. К слагаемым гарантий безопасности инъекций относится следующее:

1. Проведение оценки сложившей ситуации с безопасностью инъекций.
2. Составление детального плана мероприятий по массовой вакцинации, в котором отражены ключевые вопросы, выявленные в итоге проведенной оценки.
3. Осуществление плана на практике.
4. Мониторинг результатов.

Кроме того, менеджерам следует позаботиться о том, чтобы в их распоряжении была простая и оперативно функционирующая система мониторинга неблагоприятных последствий прививочных кампаний. Такая система в равной степени служит делу организации и проведения текущей кампании, а также позволяет вычленить ключевые вопросы, касающиеся иммунизации населения и безопасности инъекций. В дальнейшем все эти аспекты должны быть учтены при организации плановых мероприятий по вакцинопрофилактике и найти свое отражение в более долгосрочном плане мероприятий по безопасности иммунизации.

К основным элементам обеспечения безопасности иммунизации при проведении массовой прививочной кампании можно отнести следующее:

[^5]* Меры, обеспечивающие организацию безопасного удаления отработанного острого/колющего инструментария.
* Систему мониторинга и купирования ПВО.
* Стратегию проведения разъяснительной работы по осознанию важности аспектов безопасности среди как населения, так и медработников.
* Бюджетные средства на финансирование всех запланированных направлений работы.

Детальное планирование прививочных кампаний в обязательном порядке предполагает следуюшее:

- Уточнение информации обо всех основных участвуюших сторонах и партнерах.
- Планирование, выделение финансовых средств и размешение заказов на адекватные поставки всех необходимых изделий.
- Проведение оценки ситуации, сложившейся за последнее время с безопасностью инъекций.
- Составление подробного бюджета с котировкой стоимости всех позиций оборудования, обеспечиваюшего безопасность инъекций.
- Планирование мероприятий по обучению персонала и подготовка информационных сообшений для СМИ.
- Ориентация на безопасностъ инъекций с самого начала прививочной кампании.
- Мониторинг, документальное оформление и распространение результатов.
- Анализ результатов и извлечение полезньх уроков из практики.

Безопасное введение вакцин:

- Использование вакцины и инъекционных материалов, прошедших преквалификацию экспертами ВОЗ/ЮНИСЕФ или одобренных на национальном уровне.
- Соблюдение принципа групповой упаковки при распределении между прививочными пунктами вакцин в комплекте с соответствуюшим растворителем, шприцами для восстановления готовых форм, СРшприцами и контейнерами для хранения отработанного острого/колюшего инструментария.
- Акцент на выполнение требований стерильности, а также правил восстановления готовых форм и безопасного введения инъекций.
- Обучение медработников соответствуюшим техническим приемам.
- Обеспечение контролепригодности поставок вакцины по ее фирме-изготовителю и номеру серии.

Организация удаления отработанного острого/колющего инструментария:

- Проведение оценки местного законодательства и допустимых нормативов по обработке и удалению острых/колюших медицинских отходов.
- Поиск практически приемлемых и простых вариантов решения проблемы сбора и удаления отходов.
- Обязательное наличие производственных мошностей для удаления острых/колюших отходов и надлежаших предохранительных контейнеров.
- Планирование работы по транспортировке, хранению и удалению отходов еше до начала массовой кампании.
- Доведение до сведения медработников четких инструкций и методических рекомендаций по удалению отходов.
- Повседневный мониторинг процесса удаления отходов.

Мониторинг и купирование ПВО:

- Проведение оценки или создание системы мониторинга ПВО.
- Поиск каналов для оперативной передачи отчетных данных.
- Уточнение перечня ПВО, подлежаших включению в отчетные формы, а также списка отслеживаемых противопоказаний.
- Обучение медработников тому, как проводить расследования по поводу ПВО и купировать такие проявления, а также как реагировать на распространение слухов.
- Информирование основных участников прививочной кампании о том, почему она может способствовать утверждению мнений о повыпшении частоты возникновения ПВО.
- Планирование работы по распространению информационных сообшений о прививочной кампании для СМИ с учетом бытующих на местах сомнений относительно гарантий безопасности.
- Учреждение экспертной комиссии по оценке ПВО.

Проявление бдительности ввиду возникновения «вопросов» и распространения слухов.

Несколько полезных советов

- Разработка политики и стратегии массовой компании задолго до ее проведения.
- Практически приемлемые, ориентированные на специфику страны подходы к решению проблемы удаления отработанного острого/колюшего инструментария должны быть заблаговременно найдены и запланированы.
- Все расходные и другие материалы должны быть заказаны, как минимум, за шесть месяцев до проведения кампании.
- С самого начала кампании должны быть четко распределены функции и обязанности, в том числе крайние сроки выполнения всех поставленных задач.
- Следует обратиться ко всем участвуюшим сторонам и партнерам (в том числе к неправительственным организациям, профессиональным врачебным и сестринским ассоциациям, религиозным группам и т.д.) с просьбой об оказании содействия в распространении информационных материалов, пропагандируюших идею безопасности иммунизации.
- Необходимо регулярно отслеживать ход осушествления всей кампании, включая проведение итоговой оценки последней, чтобы уточнить достигнутые успехи и возникшие трудности, а также извлечь полезные уроки. Сделанные в результате этого выводы должны быть доведены до сведения всех партнеров.

Основные элементы		
Планирование массовых кампаний, включая меры по их безопасности: - Уточнение информации обо всех основных участвуюших сторонах и распределение между ними направлений деятельности, функций и обязанностей. - Создание необходимых условий для включения аспектов обеспечения безопасности в рекламные материалы о предстояшей кампании. - Проведение анализа сложившейся практики безопасного введения инъекций для оценки обстановки и уточнения потребностей и проблем, связанных с предстояшей кампанией. В этой связи полезной может оказаться предлагаемая BO 3 стандартная методика оценки безопасности инъекций. - Включение следуюших слагаемых безопасности в планы проведения массовых прививочных кампаний.	1. Подробная смета расходов с указанием конкретных источников финансирования. 2. Микроплан по распределению вакцин, растворителей, инструментария для введения инъекций и восстановления готовых форм, а также контейнеров для безопасного хранения отходов. 3. План подготовки кадров по безопасности инъекций и мониторингу ПВО. 4. Комплексный план удаления отходов. 5. Каналы передачи информации о возникновении ПВО. 6. План действий при кризисньх ситуациях, включая коммуникационные стратегии, чтобы распространяемые слухи не поставили массовую кампанию под угрозу. - Подготовка «Вопросов и ответов» для СМИ с базовой информацией о прививочной кампании и возможных причинах развития ПВО.	- Разработка протокола лечения анафилаксии и организация необходимого обучения, включая поставки соответствуюших препаратов и оборудования. - Анализ отводов от профилактических прививок (к примеру, ввиду СПИДа) и возможных последствий непосредственно для массовой кампании; организация необходимой подготовки персонала. - Планирование работы по мониторингу мероприятий, успехов и трудностей на основании регулярных отчетов, поступаюших с прививочных пунктов. - Планирование на начальном этапе в целях проведения итоговой оценки и использование полученных данных для составления долгосрочных планов действий по решению выявленных проблем и вопросов. Распространение приобретенного опыта с тем, чтобы другие могли извлечь для себя полезные уроки.

| Введение вакцины |
| :--- | :--- |
| - Закупки вакцин, СР-шприцев |
| и предохранительных |
| контейнеров (и, если |
| необходимо, шприцев для |
| восстановления готовых |
| форм) у поставшиков, |
| прошедших |
| преквалификацию экспертами |
| ВОЗ/ЮНИСЕФ или | ВОЗ/ЮНИСЕФ или одобренных национальными контрольными органами.

- Обеспечение соответствия поставок расходных материалов в количественном отношении и соблюдение принципа «групповой упаковки» при их распределении. Тшательное планирование логистических операций с тем, чтобы на каждом прививочном пункте расходные материалы имелись в достаточном количестве.
- Заблаговременное размешение заказов (как минимум, за шесть месяцев) до начала проведения кампании.
- Осознание медработниками актуальности обеспечения безопасности на протяжении всей прививочной кампании.
- Отказ от практики насаживания игольных колпачков на иглы, которые сразу после использования следует поместить в предназначенный для этого предохранительный контейнер или проколостойкую емкость для последуюшего безотлагательного удаления безопасным образом.
- В учебную программу подготовки персонала на любом уровне в обязательном порядке должны быть включены такие вопросы, как восстановление готовых форм лиофилизированных вакцин (использование растворителя, специально предназначенного только для конкретной вакцины, и его забор из ампулы в полном объеме), применение СР-штприцев и их надлежащее удаление в предохранительном контейнере.

Удаление острых отходов

- Безопасное удаление

использованного инъекционного оборудования представляет собой один из важнейших аспектов обеспечения безопасности инъекций. В этом деле не сушествует единственно приемлемого универсального метода, однако еше до начала кампании должно быть найдено такое решение, которое соответствовало бы местным условиям и было бы согласовано со всеми партнерами.

- Оценка возможностей на местах по обработке и удалению острых/колюших отходов (например, выявление действуюших мусоросжигательньх установок, мест для сгорания, повторного использования и безопасного захоронения отходов и т.п.).
- Строительство в необходимых случаях печей для сжигания отходов или поиск временныг плошадок для обработки отходов.
- Планирование доставки, хранения и обработки отработанного острого/колюшего инструментария. Предохранительные контейнеры должны быть пронумерованы, чтобы можно было проверить их доставку на место уничтожения отходов.
- Поиск практически приемлемых и простых вариантов решения проблемы, которые могут быть реализованы в период проведения кампании. Использование плана мероприятий по удалению отходов, а также системы, созданной для повседневного удаления острых/колюших отходов в будушем.
(Допускается эксплуатация установок для сжигания или сгорания отходов, рециркуляция отходов, их безопасное захоронение).
- Разработка четких инструкций и методических

Мониторинг ПВО

- Создание простой системы эпиднадзора, если она еще не учреждена, за неблагоприятными реакциями, включая разработку стандартных определений случая и отчетной формы, составление инструкций по ее заполнению и последуюшей отправке по инстанции.
- Мониторинг распределения и использования всех серий вакцины.
- Обеспечение плановой отчетности и купирование ПВО на прививочных пунктах/в клиниках через обучение персонала тех учреждений, где возможно развитие ПВО, а также где ПВО могут протекать в острой форме или проявиться позднее.
- Продолжение мониторинга еше, как минимум, в течение четырех недель после завершения кампании и внедрение системы мониторинга на постоянной основе там, где это возможно.
- Оценка ожидаемой частоты развития ПВО вследствие введения подлежаших(ей) использованию вакцин(ы), а также разницы в фоновых показателях заболеваемости среди целевых возрастных групп населения, охваченных прививочной кампанией. Сопоставление полученных таким образом исходных статистических данных с фактическими показателями, выявленными в ходе проведения кампании.
- Определение кандидатуры координатора и создание экспертной комиссии, в задачу которой входит получение и анализ отчетов о развитии ПВО в период прививочной кампании.
- Принятие безотлагательных ответных мер при выявлении ПВО путем проведения необходимого расследования и исправления ошибок, допущенньх при реализации программной деятельности.
- Внимательное отношение к
$\left.\begin{array}{l|l|l|}\hline & \begin{array}{l}\text { указаний для медработников } \\ \text { по удалению острых/ } \\ \text { колюших отходов и вопросам } \\ \text { организации удаления } \\ \text { отходов. } \\ \text { Инструктирование персонала } \\ \text { относительно практических } \\ \text { приемов, рекомендованных в } \\ \text { связи с массовой кампанией, } \\ \text { и повседневный контроль } \\ \text { выполнения данных } \\ \text { предписаний. }\end{array} & \begin{array}{l}\text { появлению слухов вокруг } \\ \text { ПВО и оперативное } \\ \text { реагирование на них. }\end{array} \\ \hline\end{array}\right]$

Код для размещения заказа: WНO/V\&B/02.10
С содержанием этого документа можно ознакомиться через Интернет по адресу:
http://www.who.int/vaccines-documents
Дополнительную информацию по безопасности инъекций можно получить через Интернет по адресу:
http://www.who.int/vaccines
Приоритетный проект по безопасности иммунизации
Департамент вакцин и биологических препаратов
Всемирная организация здравоохранения
20 Avenue Appia, CH-1211 Geneva 27, Switzerland
Fax: + 4122791 1210; E-mail: epidata@who.int

Приложение 5
 Последние новости в области вакцин и других биологических препаратов*

В этом выпускеОсновные моменты 1
Предыстория 2
Поставки
лиофилизированных вакцин
и их хранение 2 2
Совместнье поставкивакиин и растворителей к
ним 2
Растворители для сухихвакцин.2
Внедрение новых
вакиин 3
Рекомендачии ВОЗ вотиоиетии
растворителей 3
Прочесс восстановления готовыхх форм. 3
Как избеэсать возможныхоиибок в рамкахпрограмм.4
Что делать, когда что-тоне так?4

Надлежацая практика восстановления готовых форм вакцин и обрацения с ними позволяет избежсать возможные оиибки при осуицествлении программной деятельности

Основные моменты

- Следует использовать только те растворители, которые поставляет фирма-изготовитель специально для растворения данной сухой вакцины. Использование любого другого растворителя недопустимо.
- Поставки растворителей должны осуществляться вместе с партиями флаконов с сухими вакцинами для последующего получения готовых форм. Таким образом будут созданы условия для смешивания вакцины с нужным растворителем. Перед восстановлением готовой формы растворитель следует охладить до температуры ниже $+8^{\circ} \mathrm{C}$, чтобы не подвергать вакцину термическому шоку.
- Вследствие несоблюдения правил обращения с готовыми формами может произойти контаминация вакцин стафилококками и другими микроорганизмами. В таком случае возможно образование химического соединения, называемого токсином, а введение загрязненной вакцины в виде инъекции может оказаться смертельным. Чтобы избежать этого, готовые формы вакцин БЦЖ, против кори и желтой лихорадки необходимо хранить в охлажденном состоянии, а восстановленные готовые формы, невостребованные по истечении 6 часов после разведения, выбрасывать.
- Некоторые недавно разработанные новые вакцины также подлежат смешиванию с растворителем, и все восстановленные готовые формы вакцин следует выбрасывать по истечении максимального периода хранения, указанного в листке-вкладыше фирмыизготовителя, или не позднее, чем через 6 часов после разведения, - в любом случае следует руководствоваться более коротким допустимым периодом хранения.
- В настоящее время отпала необходимость в транспортировке и хранении лиофилизированных вакцин (против кори, желтой лихорадки и БЦЖ) при $-20^{\circ} \mathrm{C}$. Теперь их можно хранить в холодильнике при температуре от $+2^{\circ} \mathrm{C}$ до $+8^{\circ} \mathrm{C}$.

ДЕПАРТАМЕНТ ВАКЦИН И ДРУГИХ БИОЛОГИЧЕСКИХ ПРЕПАРАТОВ

Всемирная организация здравоохранения Женева
2000 г.

Правильное хранение вакцины и растворителя перед восстановлением
«Следует
использовать только
те растворители,
которыие поставляет
фирма-изгтовитель
спеииально для
растворения данной
сухой вакиинь.
Использование любого
другого растворителя
недопустимо»

Правильное хранение вакцины и растворителя перед восстановлением готовой формы

Предыстория

Одни вакцины поступают в пункт назначения от фирмыизготовителя в жидком виде, готовом для введения. Другие же поступают в высушенном путем заморозки (лиофилизированном) виде, и их необходимо разбавлять жидкостью (растворителем) прежде, чем делать инъекцию. Какие бы ни были инъекции, для их введения необходимо иметь стерильный шприц и стерильную иглу. Однако в связи с необходимостью разведения порошкообразной вакцины в растворителе (восстановления готовой формы) возникают проблемы особого свойства. Bопервых, для смешивания порошка с растворителем после вскрытия каждого флакона требуется стерильный шприц и стерильная игла. Во-вторых, вакцинаторы обязаны пройти курсы профессиональной подготовки по восстановлению готовых форм, чтобы свести к минимуму вероятность ошибок по вине человека. В этом ВЬППСКЕ особое внимание уделяется вопросам правильного обращения с лиофилизированными вакцинами.
Использование неподходящего растворителя может иметь место либо по причине сбоев в системе управления запасами, либо из-за ошибок при отправке груза, когда на месте оказывается не тот растворитель, который нужен. К тому же, вследствие
неудовлетворительной подготовки специалистов вакцинатор может по ошибке взять не тот флакон или сделать это по невнимательности, причем несоблюдение правил хранения расходньх материалов может еще болыше осложнить ситуацию.

Перед восстановлением готовой формы растворитель должен иметь правильную температуру (ниже $+8^{\circ} \mathrm{C}$), чтобы не подвергать вакцину термическому шоку.

Оральная полиомиелитная вакцина (ОПВ) является единственной вакциной, которую по-прежнему по мере возможности необходимо хранить в морозильнике при $-20^{\circ} \mathrm{C}$ в складских помещениях как на центральном, так и на периферийном уровнях. Однако, вплоть до 6 месяцев ОПВ можно хранить при температуре в диапазоне от $+2^{\text {c }}$ до $+8^{\text {С }} \mathrm{C}$. Поэтому, в чрезвычайньх ситуациях или в целях проведения национальньх дней иммунизации (НДИ) против полиомиелита допускается хранение ОПВ в пределах указанного диапазона температур при условии отслеживания состояния вакцины по показаниям вакцинньх флаконных индикаторов (ВФИ).

Растворители для сухих вакцин

Растворители, поставляемые к вакцинам, являются составной частью патента на готовый продукт и предназначены для растворения конкретной вакцины. Без растворителя вакцинный «набор» является неполным. Растворители предназначены для использования с определенной вакциной с учетом объема, pH (кислотно-основного состояния), химических свойств окончательного раствора, содержащего иммунизирующий агент. При использовании неподходящего растворителя его объем для разведения сухой вакцины во флаконе может оказаться неверным, и полученные таким образом дозы будут неточными. Крайне важно, чтобы хранение, распределение и использование растворителей для вакцин осуществлялось надлежащим образом, чтобы они не оказались причиной порчи вакцин,
возникновения неблагоприятньх
реакций и составления неверных дозировок.

- Состав растворителей может быть различным.
- Не для всех растворителей 54

По причине ранее существовавшей практики снабжения растворителями, а также их транспортировки и хранения отдельно от вакцины нередко возникала путаница, что проявлялось в дефиците на местах растворителей нужного типа. Сложившаяся ситуация усложнялась еще и тем, что помимо недостаточно высокого уровня подготовки медицинских кадров не было четкой системы этикетирования и идентификации вакцин и растворителей к ним. Теперь же во избежание неразберихи ВОЗ рекомендует обеспечивать совместные поставки вакцин и растворителей к ним.

> Вакцинаторам и кладовчикам следует неизменно заботиться о том, чтобья 6 холодильнике прививочного пункта никогда не хранились какие-либо
> медикаментьь или субстаниии, которьье можсно случайно nерепутать с вакцинами или растворителями к ним.

лиофилизированная вакцина против Hib, и, как и в случае любой лиофилизированной вакцины, для восстановления ее готовой формы требуется подходящий растворитель.

РЕКОМЕНДАЦИИ ВОЗ В

 ОТНОІІЕНИИ РАСТВОРИТЕЛЕЙ- Чтобы гарантировать наличие необходимого количества каждого компонента, следует обеспечивать совместную транспортировку и распределение флаконов с вакцинами и растворителей к ним.
- Растворители ни в коем случае замораживать НЕ следует. Однако перед восстановлением готовой формы их необходимо охлаждать до температуры ниже $8^{\circ} \mathrm{C}$. Таким образом удается избежать термического шока* в отношении вакцины (который неизбежно произошел бы при смешивании с теплым растворителем).
- Сухую вакцину следует разводить только в подходящем растворителе.
- Ни в коем случае HE следует использовать дистиллированную воду для инъекций в качестве растворителя к вакцине.
- Никогда не следует вводить в виде инъекции растворители к оральным вакцинам.
Маркировка таких растворителей должна указывать на то, что они предназначены только для орального применения.

ВАКЦИНАТОРАМ И КЛАДОВЩИКАМ ВСЕГДА СЛЕДУЕТ:

Включать позицию с растворителями в систему управления запасами и обеспечивать необходимые поставки расходньх материалов.

Контролировать соответствие полученной партии вакцин партии растворителей к ним.
При выявлении любого несоответствия использование вакцины недопустимо, и эта информация должна немедленно доводиться до сведения руководителя.

Использовать только тот растворитель, который предназначен для конкретного типа вакцины и выпущен той же фирмойизготовителем.

Удостовериться в том, что объем используемого растворителя соответствует указанному в
инструкции, чтобы на каждый флакон получить необходимое количество дозировок.

Обеспечивать, чтобы в холодильнике прививочного пункта не хранились какие-либо медикаменты или субстанции, которые можно случайно перепутать с вакцинами или растворителями к ним.

Внедрение новых вакцин

В будущем в связи с внедрением многих новых вакцин вряд ли возникнет необходимость в разведении сухой вакцины в растворителе для получения готовой формы. С растворителями следует обращаться так же осторожно, как и с вакциной, причем члены прививочньх бригад должны быть обучены тому, как правильно восстановить готовую форму каждой вакцины, с которой они работают. В настоящее время во многих странах происходит внедрение таких препаратов, как

ПРОЦЕСС ВОССТАНОВЛЕНИЯ ГОТОВЬХ ФОРМ

Для восстановления готовой формы из лиофилизированной вакцины следует использовать только тот растворитель, который поставляет фирма-изготовитель. При вскрытии каждого флакона для добавления растворителя в порошкообразную субстанцию отдельно взятого флакона или ампулы с лиофилизированной вакциной необходимо пользоваться стерильной иглой и стерильным шприцем.

Во избежание каких-либо потерь сухой вакцины необходимо проявлять особую осторожность при вскрытии ампул. Восстановление готовой формы должно осуществляться в соответствии с рекомендациями ВОЗ, т.е. вне зоны проникновения прямых солнечных лучей, а сама вакцина должна храниться в защитной упаковке - в пенопластовой ячейке контейнера для вакцин или быть завернутой в бумагу или фольгу. Такое обращение с восстановленной готовой формой вакцины позволяет минимизировать влияние на нее вредного ультрафиолетового облучения.

Восстановленная готовая форма вакцины должна ставиться на лед в целях сохранения ее активности (для поддержания таким образом жизнеспособности как можно болышего числа микроорганизмов в каждой дозировке). Для забора из флакона очередной новой дозы восстановленной готовой формы вакцины необходимо пользоваться стерильной иглой и стерильным шприцем. Восстановленную готовую форму вакцины следует хранить в прохладном месте, а по истечении 6 часов после разведения невостребованный объем жидкости нужно выбросить.

* «Термический шок» - процесс разрушения вакцины, возникаюший вследствие использования растворителя, который имеет слишшкм высокую температуру (свьпше $+8^{\circ}$ С). Это приводит к пибели части или всей популяции важнейших живых микроорганизмов, содержащихся в вакцине

КАК ИЗБЕЖАТЬ ВОЗМОЖНЬХ ОІІИБОК В РАМКАХ ПРОГРАММ Токсический иок.

Восстановленная готовая форма вакцины представляет собой идеальную среду для размножения всевозможных микроорганизмов. В состав живых вакцин не входят консерванты (как это имеет место в случае многих других вакцин, расфасованных в многодозные емкости). Если происходит контаминация содержимого флакона стафилококками или какими-либо иными микроорганизмами вследствие нарушения правил обращения с ним, то незамедлительно происходит их стремительный рост. По мере увеличения численности популяции микроорганизмов вырабатывается ядовитое химическое вещество, называемое токсином. Если флакон с загрязнением такого рода хранить какое-то время (даже в холодильнике), то к утру в нем будет достаточное количество токсина, чтобы вызвать летальный исход у ребенка грудного возраста. Зарегистрирован ряд случаев, когда нескольким младенцам была введена недоиспользованная с предшествующего дня восстановленная готовая форма коревой вакцины. По истечении нескольких часов они умерли от шока. Это явление известно под названием «синдрома токсического шока». При постановке такого диагноза налицо по меньшей мере две программные ошибки, а именно: не стерильная методика восстановления готовой формы/введения инъекций и невыполнение требования по удалению вакцины в отходы через 6 часов после ее приготовления.

поставляемого другими фирмамиизготовителями, или партии вакцин других типов от того же самого производителя. В такой ситуации сотрудники практически оказываются в безвьходном положении и просто вынуждены разводить сухую вакцину не тем растворителем, который нужен. Серьезные неблагоприятные реакции, включая ряд летальных исходов, явились следствием применения разнородных растворителей.

Наруиение правил хранения. Иногда вопреки установленным правилам хранения такие потенциально опасные медикаменты, как миорелаксантные обезболивающие средства, находятся в холодильнике вместе с вакцинами. Эти препараты могут быть расфасованы в такие же флаконы или ампулы, как и вакцины или растворители к ним. По чистой случайности их могут по ошибке использовать для восстановления готовьхх форм лиофилизированньх вакцин. Имеется немало документальных свидетельств побочных реакций, некоторые из которьх были причиной смерти детей грудного возраста, наступившей в считанные минуты или часы после вакцинации.

Что делать, когда что-то не так?

- Использован неподходяиий растворитель. Проверьте наличие побочной реакции. Введите правильно разведенную вакцину.
- Неблагоприятная реакиия. Пролечите анафилаксию или другую реакцию. При тяжелом состоянии обеспечьте перевод в базовый стационар.

ДепАРТАМЕНт вакцин и дРУгих БиОлогическИХ ПРЕПАРаТОв	Вакцины БЦЖ, против кори и желтой лихорадки ни при каких обстоятельствах не должны храниться дольше 6 часов с момента восстановления их готовых форм. Неподходяиие растворители. Практика раздельньх поставок растворителей и вакцин может оказаться причиной возникновения нескольких проблем. Бывают случаи, когда в прививочные учреждения поступают партии вакцины, после которых следуют отдельные партии растворителя,	- Абсчесс. В случае необходимости направьте на лечение в базовый стационар. Поставьте руководителя в известность. - Растворитель для живой вакцины оказался слиииком теплым - не исключен термический иок. Сделайте повторную прививку, соблюдая требования, предъявляемые к восстановлению готовой формы. Уточните допущенную ошибку и исправьте ее; впредь поступайте так, чтобы этого не случалось. Обсудите происшедшее со своим руководителем и родителями ребенка.
Доступность технологий Расширенная программа иммунизации Качество и безопасность биологических препаратов Оценка и мониторинт вакцин Разработка вакцин	С этим документом можсно ознакомиться в сети Интернет по адресу: www.who.int/vaccines-documents/ ВОЗ приветствует инициативы по внесению изменений в предложенный вариант текста с учетом потребностей на местах. Чтобы изменить содерэсание данного материала, специального разрешения не требуется, однако Организация будет признательна за соответствуюцее уведомление по этому поводу. Связь по электронной почте: clementscj@who.int Можно заказать копии этих материалов по адресу: Всемирнал организация здравоохранения Департамент вакиин и друсих биололических препаратов CH-1211 Geneva 27, Switzerland - Факс: 41227914227 - Электронная почта: vaccines@who.int •	

Приложение 6

Наиболее передовая практика инфекционного контроля

1 Пользуйтесь стерильным инъекционньм опорудованием	
- Всякий раз в целях выполнения инъекции или восстановления готовой формы очередной дозы лекарства используйте стерильный шшриц и иглу. [***]	
- В идеальной ситуации старайтесь пользоваться новым одноразовым пптрицем и иглой, качество которых не вызывает сомнения. [***]	
- Обращайте внимание на целостность защитных швов упаковки. Выбрасывайте в отходы иглу или шпприц при наличии в ней проколов, разрывов или повреждений, через которые могла проникнуть влага. ["]	
- Если одноразовых ıприцев и итл в наличии нет, пользуйтесь оборудованием, которое предназначено для паровой стерилизации. Стерилизуйте оборудование согласно рекомендациям BO и ведите учет качества процесса стерилизации по данным точечных индикаторов времени, пара и температуры (ВПТ). [***]	
2 Не допускайте контаминации инъекционного опорудования и медикаментов	
- Следите за тем, чтобы подготовка каждой инъекции проводилась в чистом, специально отведенном для этого месте, где контаминация кровью или биологическими жидкостями маловероятна. [**]	
- Отдавайте предпочтение использованию однодозных, а не многодозных флаконов. ["*]	
- Если все же приходится использовать многодозные флаконы, зашитные перегородки последних всегда протыкайте стерильной иглой. [***] Игла не должна оставаться воткнутой в пробку флакона. [**]	
- Выбирайте ампулы с легко отбиваемым кончиком, а не ампулы, для вскрытия которых требуется металлический надфиль. [**]	

[^6]- Если все же приходится использовать ампулу, для вскрытия которой требуется металлический надфиль, при отделении кончика ампулы оберегайте свои пальцы от случайных порезов с помощью чистого защитного барьера (например, неболышой марлевой прокладки). [**]
- Проверяйте медикаменты на наличие заметной контаминации или нарушение целостности (например, трещин, протечек) и, если они есть, выбрасывайте такие препараты в отходы. [*]
- Выбрасывайте иглу в отходы, если произошло ее случайное прикосновение к не стерильной поверхности. ["]

	\square

3 Не допускайте случайных травм у медработников от укола иглой

- Рассчитывайте на то, что во время и сразу после инъекıии пациент может сделать резкое движение, и принимайте соответствующие предупредительные меры. [**]
- Не пытайтесь руками насадить игольный колпачок на иглу или совершать какие-либо другие манипуляции с иглами. Если все же необходимо надеть игольный колпачок на иглу, то это нужно делать одной рукой зачерпывающим движением. [***]

- Занимайтесь сбором использованных пшприцев и игл по месту их применения, опуская в контейнер для острых предметов, который является проколо- и влагостойким и который можно герметично закупорить до того, как он будет наполнен. [**]

sany

5 Друтие вопросы практического свойства

1. Специализированная технология. По мере возможности следует пользоваться оборудованием, которое позволяет предотвращать случайные травмы от укола иглой и оказывается достаточно эффективным как в отношении пациентов, так и медработников. Все более доступными становятся саморазрушающиеся (СР-) ішприцы, благодаря чему в учреждениях определенного профиля, в том числе на прививочных пунктах, исключается повторное использование инъекционного оборудования.
2. Тщательное мытье рук медработниками и целостность кожных покровов. Соблюдайте правила личной гигиены в отношении рук (т.е. мойте руки и обрабатывайте их дезинфицирующим составом) перед тем, как приступить к подготовке инъекционного материала и сделать уколы. Необходимость в мытье рук перед каждой инъекций будет зависеть от конкретного учреждения, а также от того, был ли контакт с загрязненными предметами, кровью или биологическими жидкостями. Старайтесь не делать инъекции, если целостность кожных покровов нарушена вследствие местной инфекции или какого-либо кожного заболевания (например, экземы, повреждений на коже, порезов). Предпринимайте зашитные меры в случае любых мелких порезов.
3. Перчатки. Чтобы сделать укол, перчатками пользоваться не нужно. Если же не исключено обильное кровотечение, то целесообразно воспользоваться одноразовыми перчатками.
4. Обработка тампоном наконечников флаконов или ампул. Необязательно использовать антисептические или пропитанные дезинфицирующим раствором тампоны для обработки наконечников флаконов или ампул. Если все же приходится делать это с помощью антисептика, воспользуйтесь чистым одноразовым тампоном, выдержав рекомендуемое время контакта раствора антисептика с обрабатываемой поверхностью. Не пользуйтесь ватными шариками, которые хранятся во влажном состоянии внутри емкости для многоразового применения.
5. Подготовка участка кожного покрова для инъекции. Промойте участок кожи с явными признаками загрязнения или пятен. Обработка тампоном чистого кожного покрова перед тем, как сделать укол, является необязательной. Если все же приходится делать это с помощью антисептика, воспользуйтесь чистым одноразовым тампоном, выдержав рекомендуемое время контакта раствора антисептика с обрабатываемой поверхностью. Не пользуйтесь ватными шариками, которые хранятся во влажном состоянии внутри емкости для многоразового применения.

Наиболее передовая практика инфекционного контроля при нарушении целостности кожного покрова во время введения с помощью иглы внутрикожных, подкожных и внутримышечных инъекций

Безопасная для здоровья инъекция не причиняет какого-либо вреда реципиенту, не подвергает медработника какому-либо риску
и не связана с отходами, которье предстаяляют собой опасность для населения

В целях профилактики инфекций, связанных с выполнением инъекций, отказ от уколов в тех случаях, когда в этом нет крайней необходимости, представляется наиболее приоритетным. Инъекции, выполняемые по медицинским показаниям, должны быть безопасными. Предложенная практика является наиболее передовой и включает те мероприятия, которые были разработаны с учетом научно обоснованных доказательств или согласованной позиции экспертов ради того, чтобы надежно обезопасить здоровье пациентов, медработников и различных групп населения.
ГСЕМРРАЯ ОРГАНИЗАЦИЯ

ВДРАВООХРАНЕНИЯ
Злобальная сеть

«Безопасность инъекций»

Замечания и предложения следует направлять в Секретариат Глобальной сети по безопасности инъекций (ГСБИ).

Всемирная организация здравоохранения. Департамент безопасности крови и клинической технологии. Avenue Appia 20, Geneva 27, Switzerland 1211. Факс: +41 227914836. Электронная почта: sign@who.ch

Приложение 7：Технические характеристики печи＂De Montfort＂для сжигания отходов

De Montfort Mark 8a

Модель	Магk 8а
Описание	Недорогая печь для сжигания медицинских отходов
Емкость（вес／объем）	12 кг／0．7 м ${ }^{3}$

Достоинства

坴 При строительстве на месте печи для сжигания отходов используются материалы，которые можно закупить на отечественном рынке，а именно：огнеупорный кирпич，огнеупорный раствор，заслонку из мягкой стали，раму，колосниковые решетки и дымовую трубу，а также стандартный строительный кирпич．
気 Печь снабжена вторичной топочной камерой，что позволяет минимизировать количество вредных атмосферных выбросов．При прохождении остаточных горючих газов через вторичную топочную камеру обеспечивается подача дополнительного объема воздуха， благодаря чему происходит вторичное сгорание на фоне еще более высокой температуры，и тем самым достигается превращение газов в устойчивые соединения，например в двуокись углерода．
気 Загрузка печи осуществляется в растопочный период，а затем，в процессе эксплуатации，ее можно время от времени загружать повторно．
．${ }^{\text {．}}$ За счет обустройства двойных стенок и песчаной засыпке между ними，даже в результате продолжительной работы，печь никогда не прогревается до опасной для прикосновения отметки．

Технические ограничения

＂Печь работает на естественной тяге，предполагает использование топлива для растопки，а для выхода из охлажденного состояния на уровень рабочей температуры требуется определенное время．Поэтому ее эксплуатация в оптимальном режиме рассчитана на продолжительное время －не менее четырех часов подряд．
＂Печь не предназначена для монтажа внутри помещения，так как всякий раз при открывании загрузочной створки дым неизбежно проникает в окружающее пространство．Чтобы оператор не мокнул под дождем，следует смонтировать легкую конструкцию для навеса．
＊Вследствие однократной загрузки большого количества шприцев происходит проникновение расплавленного пластика в золоуловитель и далее через створку последнего．После охлаждения образовавшегося расплава пластика эта створка окажется заблокированной，что может привести к ее отрыву от стенки печи．
＊Отсутствие оборудования по контролю уровня загрязнения окружающей среды означает，что количество атмосферных выбросов может не соответствовать требованиям природоохранного законодательства или международным стандартам．

Приложение 8：Технические характеристики печи＂SICIM＂для сжИГаНИЯ оТхоДОВ

SICIM Pioneer AC／01

Модель	Pioneer AC／01
Описание	Печь для самосгорания отходов
Емкость（вес／объем）	20－30 кт／1 м ${ }^{3}$
Продолжительность цикла／загрузки	180 мин／одна загрузка
Температура мин／макс	$700^{\circ} \mathrm{C} / 900^{\circ} \mathrm{C}$
Источник（и）энергии	Бумага для растопки
Энергопотребление	Н／п ввиду самосгорания отходов
Выброс топочных газов	Количество атмосферных выбросов не определялось，однако при полевых испытаниях во Вьетнаме и Камбодже проводились наблюдения за составом дыма и твердых частиц
Масса брутто／объем	250 кг／3 м ${ }^{3}$
Завод－изготовитель	SICIM Spa Via Aquileia， 94 34076 Romans d＇Isonzo，（GO），Italy Тел．：（34） 048190188 Факс：（34） 048190332
Ориентировочная цена	2500 долл．США

Достоинства

気 Печь＂SICIM＂для самосгорания отходов предназначена для сжигания медицинских отходов неоднородного состава．
気 Работает без горючего－лишь для растопки необходима бумага／упаковочные материалы или опавшая листва．
気 Находит широкое применение в Камбодже и функционирует без особых проблем．
＊В последнее время для изготовления стенок этой мусоросжигательной установки используется нержавеющая сталь толщиной 3 мм DIN 304，благодаря чему срок службы печи значительно увеличился．

Технические ограничения

＊В процессе работы корпус мусоросжигательной установки сильно нагревается，ввиду чего для ограничения доступа ее следует огораживать забором．
－Во время полевых испытаний при растопке и перезагрузке печи наблюдалось выделение густого дыма и твердых частиц．
＊Место установки печи должно находиться на значительном расстоянии от жилых зданий．

Практический опьт

Камбоджа，Лаос и Въетнам（широкое распространение），Соломоновы Острова，Кирибати，
Федеративные Штаты Микронезии，Фиджи，Вануату，Филиппины．

Приложение 9：Технические характеристики печи＂Medicin 400＂для сжигания отходов

Модель	Medicin 400
Описание	Мусоросжигательная установка с двумя горелками，работаюшими на сжиженном нефтяном газе（СНГ）
Емкость（вес／объем）	5 кг／0．012 м ${ }^{3}$
Продолжительность цикла／загрузки	15 мин／одна загрузка
Температура мин／макс	$900^{\circ} \mathrm{C} / 1100^{\circ} \mathrm{C}$
Источник（и）энергии	2×45 кг баллоны с СНГ
Энергопотребление	90 кг на 36 месяцев
Выброс топочных газов	H／п
Масса брутто／объем	Н／п
Завод－изготовитель	Health Care Waste Solutions P．O．Box 1647，Silverton 0127 Pretoria，South Africa
Ориентировочная цена	2500 долл．США （включая ограждение и 90 кг газа）

Достоинства

気 Поскольку данная мусоросжигательная установка работает на газе，ее можно быстро и легко запустить， а в конце рабочего цикла так же просто загасить．Благодаря этому，если установка работает в центре здоровья с небольшой нагрузкой，ее можно включать всего лишь 1－2 раза в неделю，тогда как ее эксплуатация в лечебном учреждении с большим коечным фондом предполагает многократное включение установки в течение дня．
s．Поддон печи наполнен водой для улавливания золы по мере ее оседания，что уменьшает риск возникновения пожара．По окончании каждого цикла поддон опоражнивают в находящийся ниже зольный бункер，емкость которого рассчитана на годичный срок эксплуатации печи（при рабочей нагрузке в пределах 100 циклов в год）．
袁 Процесс горения отрегулирован настолько，что образование дыма не происходит．В такой печи можно сжигать всевозможные медицинские отходы в любом количестве．
袁 Корпус топки печи，зашитная решетка и загрузочная створка выполнены из нержавеюшей стали．По истечении трех лет эксплуатации нет никаких признаков физического износа．Болышинство других комплектуюших из металла имеют антикоррозионное покрытие．
s．За три года эксплуатации конструкция установки осталась неизменной．В комплект поставки входит прочное внешнее ограждение от проникновения посторонних．
透 При рабочей нагрузке на уровне двух циклов в неделю два газовых баллона уже прослужили три года и не нуждаются в замене．Наличие переключаемого вручную направляюшего гидрораспределителя позволяет сменить один баллон，тогда как другой обеспечивает подачу газа на мусоросжигательную установку．

Технические ограничения

＊Поскольку установка работает на газе，периодически возникает необходимость в смене большого 45－ килограммового баллона．Для этого требуется выделение не только транспорта и денежннх средств на приобретение газа，но и гарантии того，что сам баллон，являясь весьма дорогостояшим，не будет украден по дороге．
－Одни иглы сжигаются полностью，тогда как другие－лишь частично，ввиду чего при удалении золы необходимо соблюдать меры предосторожности．
＊Иногда могут возникать сбои в работе искрового газового запальника－и тогда могут понадобиться спички．
－Опорная рама в донной части топки печи и суппорты горелок выполнены из мягкой стали и постепенно корродируют．За три года эксплуатации не было необходимости в замене этих деталей，хотя если это потребуется，то демонтаж установки должен быть поручен специалисту．Подлон топочной камеры， также изготовленный из мягкой стали，в конечном итоге проржавеет，однако его легко заменить без участия специалиста．
－Габаритные размеры и емкость загрузочного лотка в известном смысле ограничены．В него свободно помешается один，а не два 10－литровых контейнера с острыми／колюшими отходами．

Приложение 10：Технические характеристики автоклава с дробилкой

Модель	Hydroclave：Model H－15
Описание	Автоклав с дробилкой
Емкость（вес／объъем）	50 кк／час
Габаритные размеры	$195 \times 105 \times 89$ cm
Завод－изготовитель	Hydroclave Systems Corp． 1371 Middle Road K7L 5H6 Kingston，Canada Тел．：＋ 1 （613） 5451933 Факс：＋ 1 （613） 5474521
Ориснтировочная цена	35000 долл．СШІА （эксплуатационные расходы－ примерно 3 тыс．долл．США）

Достоинства

－Существенное уменьшение в весе и объеме．
场 Сухие отходы．
去 Квалифицированный оператор не требуется．
5 Болышие возможности в плане дезинфекции．
s．Весь технологический процесс происходит внутри，без предварительного измельчения отходов или отвода жидкости／газа，благодаря чему обеспечиваются более безопасные условия труда．
圭 Может перерабатывать изделия из пластика，стекла и металла．

Технические ограничения

－Процесс сопровождается неприятным запахом．
＂Требуется энерго－и водоснабжение．
＊Не предназначен для обработки рентгеноанатомических и цитотоксичных отходов．

Практический опьт

＂Может быть смонтирован в стране с низким уровне дохода на душу населения （функционирует в Индии）．
＊Строительство：монтаж ведет частная подрядная организация．
＂Эксплуатация：установка работает автономно．Требуется только один сотрудник для выполнения операций разгрузки и выгрузки．После загрузки и герметизации автоклава происходит его включение вплоть до завершения этапа стерилизации отходов．
＊Материалы，необходимые для сборки：резервуар для гидроклавирования，дробилка， транспортер，пульт управления，ленточный самописец／контроллер，установка для конденсации пара，паровые клапаны и исполнительные механизмы．

Приложение 11

Использование и удаление СР-шприцев и контейнеров для безопасного хранения отходов

Типовая рабочая инструкция для медработников (по мере необходимости подлежси адаптации)

ИСПОЛЬЗОВАНИЕ:

Руководствуясь инструкцией, приведенной на одной из граней предохранительного контейнера, в первую очередь следует провести его сборку.
Как и в случае с многоразовыми шприцами, при использовании СР-шприцев необходимо строго придерживаться правила - «введение только одной инъекции одним стерильным шприцем и одной стерильной иглой».
Перед использованием любого СР-шприца проверьте, не нарушена ли целостность упаковки и не вскрыта ли она:

- Если каждый СР-шприц упакован отдельно, то его упаковка должна быть герметизирована прочным заварочным швом.
- Если одна упаковка содержит сразу несколько СР-шприцев, то верхняя часть игольного колпачка должна быть герметизирована (неболышим заварочным шшвом). Убедитесь в целостности заварочного шва.
- Не пользуйтесь СР-шприцами при несоблюдении какого-либо из перечисленных выше условий.
Непосредственно при использовании СР-шприца:
- СР-шприц в индивидуальной упаковке необходимо вскрыть и снять игольный колпачок.
- Если одна упаковка содержит сразу несколько СР-шприцев, то сначала необходимо расчехлить поршень, а затем снять игольный колпачок.
В Выбросьте игольный колпачок и чехольчик от поршня в контейнер для безопасного хранения отходов. Не следует оставлять игольный колпачок для повторного насаживания на иглу.
Не тяните поршень на себя вхолостую, т.е. до забора вакцины (это приведет шприц в негодность до его фактического использования).
Проткните иглой резиновый колпачок флакона с вакциной (последний удерживают в опрокинутом вверх дном положении).
Осторожно тяните поршень на себя таким образом, чтобы уровень забора вакцины в СР-шприце немного превышал отметку 0.5 мл на шкале (чтобы затем можно было выдавить воздух).
Движением поршня осторожно выдавите воздух, достигнув отметки 0.5 мл на шкале.
Прекратите давление на поршень, как только он дойдет до отметки 0.5 мл (в противном случае, при попытке снова потянуть поршень на себя, последний будет заблокирован).
Отсоедините флакон из-под вакцины от шприца.
Введите забранную дозу вакцины.
Сразу же опустите СР-шприц в предохранительный контейнер (не насаживайте игольный колпачок на иглу).
Не кладите пустой флакон или любые другие отработанные изделия в контейнер для безопасного хранения отходов.

Положите пустой флакон в отдельный контейнер (например, в пластиковый пакет). В конце рабочего дня следует выкопать неболышую яму и выбросить туда пустые флаконы, раздробить их камнем и засыпать землей.
Пр При посещении любого прививочного пункта (стационарного, периферийного, передвижного) всегда берите с собой предохранительный контейнер (даже если в нем уже находится какое-то количество отработанных шприцев).

Предохранительный контейнер следует наполнять примерно на $3 / 4$ объема. Следите за тем, чтобы контейнер не был переполнен (в контейнер емкостью 5 л входит примерно 100 использованных шприцев, а в 10 -литровый контейнер - 200 использованных штрицев).
По После наполнения предохранительного контейнера на $3 / 4$ объема его следует закупорить, чтобы использованные шприцы не высыпались из него.

УДАЛЕНИЕ ОТХОДОВ:

Храните наполненные отходами контейнеры в безопасном и сухом помещении центра здоровья. Не допускайте хранения более одного месяца наполненных контейнеров на территории центра здоровья.
Берите с собой наполненный предохранительный контейнер для встречи с руководителем районного подразделения РПИ, чтобы получить новую партию расходных материалов (вакцины, СР-шприцы, контейнеры для безопасного хранения отходов).
Очередной запас СР-шприцев и предохранительных контейнеров вы получите в обмен на доставленные вами наполненные отходами предохранительные контейнеры.

Принятая стратегия обмена позволит учреждениям районного уровня обеспечить адекватное удаление (в частности, путем сжигания) отработанных шприцев и наполненных предохранительных контейнеров. Кроме того, при такой организации работы имеется возможность сопоставить количество выданных ранее и возвращенных обратно шприцев и предохранительных контейнеров.

Распределение СР-пприцев и контейнеров для безопасного хранения отходов

Типовая рабочая инструкция для руководителей программ иммунизации (по мере необходимости подлежсит адаптации)

Распределение предохранительных контейнеров должно всегда осуществляться одновременно с выдачей СР-пшприцев.
При распределении СР-Іпприцев и предохранительных контейнеров следует руководствоваться требованиями, предъявляемыми на областном и районном уровне.
\longleftarrow Порядок распределения СР-пाприцев должен соответствовать схеме распределения вакцин (национальными учреждениями между областями, областными учреждениями между районами, районными учреждениями между центрами здоровья) либо согласно схеме лекарственного обеспечения (национальными учреждениями между районами, районными учреждениями между центрами здоровья).
Распределение СР-шприцев должно проводиться в соответствии с графиком обеспечения вакџинами (ежеквартально национальными учреждениями между областями, ежемесячно областными учреждениями между районами, еженедельно районными учреждениями между центрами здоровья).
Вид транспорта следует выбирать с учетом конкретных условий на местах.
В процессе доставки грузов следует предпринимать меры предосторожности во избежание проникновения влаги или пыли.
CP-Іприцы и предохранительные контейнеры следует хранить:
a) в том месте, которое находится в ведении лица, ответственного за иммунизацию;
b) в чистом, защищенном от осадков и охраняемом помещении;
c) в том же подразделении, где принято хранить вакцины.

В учреждениях каждого уровня лицо, ответственное за иммунизацию, обязано вести учет наличных запасов (поступлений, отпуска и остатков), причем на СРшприцы и предохранительные контейнеры следует завести отдельные карточки учета наличных запасов.
В учреждениях каждого уровня лицу, ответственному за иммунизацию, поручают заниматься приемкой груза с СР-шприцами и предохранительными контейнерами, мониторингом наличных запасов, а также вопросами распределения и отчетности по ним.
В учреждениях каждого уровня лицу, ответственному за иммунизацию, поручают заниматься составлением сметы текуних затрат на распределение расходных материалов, необходимых для обеспечения безопасности инъекций (СР-шприцев и контейнеров для безопасного хранения отходов).

Уничтожение использованных СР-шприцев и контейнеров для безопасного хранения отходов

Типовая рабочая инструкция для руководителей программ иммунизации и операторов мусоросжигательных установок (по мере необходимости подлежсит адаптации)

Полученные из различных медицинских учреждений и стационаров предохранительные контейнеры с отработанными шприцами следует хранить в надежном сухом месте. Старайтесь не хранить контейнеры с использованными шприцами больше одного месяца.
Һ尹 Если есть достаточное количество наполненных отходами предохранительных контейнеров, рекомендуется хотя бы один раз в неделю их сжигать.
С Сотрудник, отвечаюший за работу аптеки, обязан вести учет уничтоженных предохранительных контейнеров с отходами всякий раз, когда происходит их сжигание.
Перед пуском печи для сжигания отходов всегда надевайте зашитные перчатки и предохранительные (защитные) очки.
ВАЖНОЕ ЗАМЕЧАНИЕ: Не следует заниматься сжиганием отходов, состоящих исключительно из наполненньх отходами предохранительньх контейнеров. Такие контейнеры следует сжигать вместе с сухими отходами (опавшей листвой, бумагой, картоном).
Необходимо соблюдать следуюшее соотношение между разными видами отходов:

- $1 / 3$ часть предохранительных контейнеров $+2 / 3$ части сухих отходов

Порядок загрузки представляет собой следуюшее (для мусоросжигательной установки "SICIM"):
a) Перед загрузкой печи убедиться в том, вычищена ли она (отсутствие зольных остатков в топочной камере и золоуловителе).
b) Перед загрузкой печи сухими отходами на колосниковую решетку печи можно положить бумагу, чтобы еше до сжигания эти отходы не оказались в золоуловителе.
c) Всегда сначала кладите в топку сухие отходы, загрузив печь на $1 / 2-2 / 3$ объема топочной камеры.
d) Затем поверх сухих отходов укладывайте предохранительные контейнеры.
e) Максимальное количество загружаемых за один цикл предохранительных контейнеров следуюшее:

- 5-литровые предохранительные контейнеры - 10 шт.;
- 10 -литровые предохранительные контейнеры - 5 шт.

Порядок розжига печи и сжигания отходов представляет собой следуюшее:
f) Подожтите сухие отходы, желательно в верхней их части.
g) Когда пламя разгорится, закройте загрузочную створку.
h) В случае эксплуатации мусоросжигательной установки "Vulcain" через 1 мин. после розжига включите тягодутьевое устройство и оставьте его включенным на весь период сжигания отходов.
i) Продолжительность сжигания отходов будет зависеть от конкретной модели печи для сжигания отходов. При работе установки "Vulcain" процесс сгорания отходов занимает 1 час, а в случае эксплуатации установки "Sicim" - 2 часа.
j) Во время работы мусоросжигательной установки НИКОГДА не открывайте загрузочную створку до того, как она полностью остынет.
П Порядок очистки печи предусматривает следуюшее:
k) Только после того, как печь остынет, можно открыть загрузочную створку и прочистить скребком колосниковую решетку.

1) Затем следует закрыть загрузочную створку, открыть створку золоуловителя и сгрести скребком золу (зольные остатки) в предназначенный для этого сборник.
m) Захороните зольные остатки в вырытую для этого яму, не забыв засыпать ее землей.

Департамент вакцин и биологических препаратов как структурное подразделение кластера «Технологии здравоохранения и фармацевтические препараты» был учрежден Всемирной организацией здравоохранения в 1998 г. Стоящая перед Департаментом главная цель заключается в том, чтобы население групты риска во всем мире было надежно защищено от управляемых инфекций.

Пять рабочих коллективов, уделяя пристальное внимание основным вакцинам и вопросам технологии, занимаются осуществлением своей стратегии, которая начинается с разработки нормативов и стандартов и заканчивается выполнением задач в области практического осуществления и подготовки методических рекомендаций по линии программ вакıинопрофилактики. Деятельность названных бригад специалистов кратко изложена ниже.

Бригада по обеспечению качества и безопасности биологических препаратов

 обеспечивает гарантии качества и безопасности вакцин и других медико-биологических препаратов посредством формирования и внедрения глобальных нормативов и стандартов.По линии Инициативы по изучению вакцин благодаря усилиям трех бригад специалистов, которые занимаются вирусными, бактериальными и паразитарными болезнями, координируются и поддерживаются научные исследования, которые направлены на создание новых вакцин и технологий вакцинопрофилактики.

Бригада по оценке и мониторингу вакцин проводит оценку стратегий и мероприятий, ориентированных на снижение показателей заболеваемости и смертности от управляемых инфекций.

Бригада по обеспечению доступности технологий стремиться к тому, чтобы добиться снижения остроты финансовых и технических проблем на пути внедрения новых и уже созданных вакцин и технологий, связанных с иммунизацией.

Сотрудники Расииренной программы по иммунизации разрабатывают политику и стратегии, призванные обеспечить максимальные возможности в плане использования вакцин, имеющих болышое значение для общественного здравоохранения, включая решение вопросов их поставок. Программа оказывает поддержку регионам ВОЗ и странам в приобретении знаний и навыков и в развитии инфрастуктуры, необходимой для проведения в жизнь этой политики и стратегий, а также для успешной борьбы с болезнями и/или их ликвидации и окончательного искоренения.

Department of Vaccines and Biologicals
Health Technology and Pharmaceuticals World Health Organization CH-1211 Geneva 27
Switzerland Факс: +41 22791 4192/93 Эл. почта: vaccines@who.int или веб-сайт по адресу: http://www.who.int/vaccines-documents

[^0]: ${ }^{1}$ Безопасность инъекций. Совместное заявление ВОЗ-ЮНИСЕФ-ЮНФПА об использовании иммунизационными службами саморазрушаюшихся шприцев (WHO/V\&B/99.25).

[^1]: ${ }^{2}$ Методика оценки безопасности инъекций. Женева, 2001 г. (Неопубликованный документ WHO/V\&B/01.30 \& WHO/BCT/01.02).

[^2]: ${ }^{3}$ Выпускаются также предохранительные контейнеры емкостью 10,15 и 20 л. Однако, тем, кто считает целесообразным использование более вместительных предохранительных контейнеров, рекомендовано удостовериться в том, что последние будут соответствовать методу или технологии организации удаления отходов. Кроме того, необходимо принимать во внимание конкретные пути решения вопросов логистики (в частности, ожидаемую численность детского населения, которая приходится на каждую бригаду вакцинаторов, физические ограничения, связанные с транспортировкой контейнеров большей емкости, и т.п.).

[^3]: ${ }^{4}$ На данном этапе для восстановления готовой формы вакцины рекомендуется исполъзовать стандартные одноразовые шприцы.

[^4]: ${ }^{5}$ В издаваемых ВОЗ/ЮНИСЕФ Информационных бюллетенях о выпускаемой промышленной продукции (издание за 2000 г.) представлены обшие сведения, на основании которых можно выбрать подходящее для иммунизационных программ оборудование, а также приведены конкретные технические и закупочные данные по перечням отобранньгх изделий.

[^5]: * Гарантированный источник поставок безопасных вакцин, безопасных инъекционных расходных и других материалов.
 * Меры, обеспечивающие безопасность вакцинации.

[^6]: [***] Настоятельно рекомендовано и подкреплено убедительньми результатами проведения тшательно спланированных экспериментальных или эпидемиологических исследований.
 [**] Настоятельно рекомендовано на основании точных теоретических расчетов, а также логически последовательньх, описательных доказательньх данньх.
 [*] Рекомендовано на основании согласованной позиции экспертов и теоретических расчетов.

