VHPB MEETING
PREVENTION AND CONTROL OF VIRAL HEPATITIS IN GREECE
ATHENS, 15-16 MAY 2007

SURVEILLANCE IN BLOOD BANK

A. VARAKLIOTI
BIOLOGIST, Ph.D
2ND BLOOD TRANSFUSION CENTER
LAIKO GENERAL HOSPITAL ATHENS
The safety of blood supply remains a major concern of public health and requires continuous efforts to ideally reach zero-risk probability.

The public’s fear and awareness of the potential of viral transmissions through blood transfusion has been a major driving force for improvement of blood safety.

The residual risk of transmitting blood-borne viruses through transfusion varies depending on the demographic and the socio-economic conditions in each country.

The risk of transmitting viral infection to recipients of blood components has been significantly reduced over the last years owing to a combination of measures.
SAFETY OF BLOOD TRANSFUSION

- THOROUGH DONOR SELECTION AND QUESTIONNAIRE TO ELIMINATE HIGH-RISK DONORS
- APPROPRIATE USE OF BLOOD AND BLOOD COMPONENTS.
- TREATMENT OF BLOOD PRODUCTS (PATHOGEN INACTIVATION, LEUCOREDUCTION)
- IMPLEMENTATION OF ADVANCED AND HIGHLY SENSITIVE SCREENING ASSAYS FOR

TRANSFUSION TRANSMITTED VIRAL INFECTIONS

Hepatitis B virus (HBV) Hepatitis C virus (HCV) Human Immunodeficiency Virus (HIV)

HBV
6.2% of world population, ~350 million HBV carriers,
1 million get infected every year in Europe

HCV
3% of world population
~170 million chronic HCV
3-4 million get infected every year

HIV
0.5% of world population
~36.1 million have AIDS
2.8 million die every year
SEROLOGY TESTING OF BLOOD AND BLOOD COMPONENTS

HBV
Detection of HBV infection is based mainly on detection of HBsAg marker. 3rd generation immunoassay or chemiluminescence method for detection of HBsAg (MEIA, ChLIA) (<0.1ng/ml)
Detection of anti-HBc in some countries/ Optional in Greece

HCV
Detection of HCV infection is based on serology screening of antibodies against several HCV antigens
Mainly 3rd generation immunoassay (EIA, MEIA, ChLIA), and/or HCV core detection / (Confirmation Western Blot)

HIV
Detection of HIV infection is based on:
• screening of antibodies against several HIV antigens using 3rd generation immunoassays MEIA or ChLIA / (Western Blot confirmation testing)
• screening of p24 antigen
Window Phase period (WP): serologically “silent” period that precedes the development of antibodies in the initial infection. An infected donor may harbor large amounts of viral particles in the absence of symptoms and be infectious even though he remains seronegative.

Eclipse period: Virus replication is restricted to tissue sites and there is no detectable viraemia.

NAT Yield Cases: the identification of a sample as NAT positive and antibody negative [NAT (+) / antibody or antigen (-)]

ID – NAT: Screening of NAT in individual donations

MP – NAT: Screening of NAT in mini pools.
Advantages

- Narrows Window Period considerably
- Detects viral infections earlier than other screening assays
- Enhances safety of the blood supply by reducing the residual risk of viral transmissions linked to window period.
NUCLEIC ACID TESTING - NAT

Mid 90s
Introduction of NAT by plasma manufacturers on a voluntarily basis in order to provide an extra safety margin on top of inactivation procedures. Testing was performed in mini-pool format for HCV-RNA, thus reducing the viral burden in the starting pools for fractionation.

1999
Paul Ehrlich Institute (PEI) was the first regulatory body in Europe that has set a requirement for HCV NAT testing of cellular blood components (with a sensitivity of 5000 IU/ml (20000geq/ml) for HCV --RNA). In house developed test systems in mini-pool on 96 samples.

1999
Japanese Red Cross initiates the implementation of NAT testing.

1999
European Union required that all fractionated plasma products are HCV-RNA negative using NAT (with a sensitivity of 100 IU/ml of HCV-RNA in the final pool, ~230 viral particles/ml)

Beginning of 2000
many countries in Europe introduce NAT technology for HCV and HIV using ready made diagnostic NAT kits in minipools of 48, 24 and/or 16 samples.

Mandatory NAT testing for HCV RNA in: Austria, Germany, Holland and Switzerland (1999), Finland, Norway, Slovenia (2000), France and Poland (2001), Belgium and Italy (2002), Spain (2003).

NAT testing has been optionally introduced in other EU countries (England, Ireland, Luxemburg, Portugal, Greece).

HBV NAT testing has already been introduced in countries like Austria, Germany, Italy, Lithuania, Poland, Spain, Portugal and Greece.
Implementation of NAT technology in addition to the pre-existing antibody / antigen–based screening has dramatically reduced the **Residual Risk of Transmission**

1) **Direct risk measurement (1985-1990)**

(direct measurement of viral transmission risks from antibody screened transfusions)

2) **Risk modeling (1991-present)**

 i) **Incidence Rate – Window Period model**

 ii) **Viral dynamics and rates of detection of donors with incident infections (viraemia doubling time, viral load parameters etc.)**

 - Busch M et al, Transfusion, 2005, 45: 254-264
 - Weusten et al, Transfusion 2002,
Window Phase period (WP): serologically “silent” period that precedes the development of antibodies in the initial infection. An infected donor may harbor large amounts of viral particles in the absence of symptoms and be infectious even though he remains seronegative.

Eclipse period: Virus replication is restricted to tissue sites and there is no detectable viraemia.

NAT Yield Cases: the identification of a sample as NAT positive and antibody negative
[NAT (+) / antibody or antigen (-)]

ID – NAT: NAT Screening in individual donations

MP – NAT: NAT Screening in mini pools.
HCV INFECTION PROFILE

- **Ab Detection**: 70-80 days
- **RNA Detection**: 12-22 days
- **Window reduction**: 70%

HIV INFECTION PROFILE

- **Ab Detection**: 22 days
- **p24 Ag Detection**: 17 days
- **RNA Detection**: 11 days
- **Window reduction**: 50%

![HCV infection profile graph](image1)

![HIV infection profile graph](image2)
Ημέρες

HBV DNA

anti-HBc

HBsAg

ALT

The window period is about 59 days / introduction of even more sensitive serology assays for HBsAg < 0.1ng/ml → 38 days

The doubling time for HBV virus is approximately 2.5 days.

Detection of HBV DNA: 24 days

The prevalence of HBV infection is higher (compared with that of HCV και HIV) therefore the residual risk is also higher.

Koppleman MH et al, Transfusion 2005, 45, 1258-66

(Countries with low, medium or high endemicity)
Occult HBV infection (OBI)

- The presence of HBV DNA in the blood or tissues of patients, without detectable HBsAg, with or without antibodies to HBC antigen, outside the pre-seroconversion window period.

With the introduction of NAT technology two different types of HBV DNA positive / HBsAg negative blood samples are detected

(Discrimination between WP NAT yield cases and occult NAT yield cases)
Occult HBV infection (OBI)

Various forms of occult HBV infection:

- Recovery from infection defined by the presence of anti-HBs
- Chronic hepatitis B where the infection is related to escape mutants that are poorly or not recognised by either polyclonal or monoclonal antibodies in assays
- Chronic hepatitis B at the healthy carriage stage marked by the presence of anti-HBc with or without detectable anti-HBe
- Chronic hepatitis or healthy carriage without any marker of HBV infection other than HBV DNA

The viral load in OBI varies from 104 IU/ml - 500 IU/ml, often <100 IU/ml and fluctuates.

- Transmission through blood or blood products infected with OBI is under investigation and possibly depends on the quantity of the infected product, the viral load and the immunocompetence of the recipient.

- Already 3 cases of transmission through OBI.
 (Ullum H et al, Vox Sanguinis 2006, 91 suppl 3, p65
For the period 1996-2006 about 5.6 million blood units have been serologically screened.

Seroprevalence

- HBsAg: 0.4%
- HCV: 0.08%
- HIV: 0.007%

Data from SKAE (Madrid, 2007)

NUCLEIC ACID TESTING IN GREECE:

- Implementation of NAT was initially launched for HCV RNA/ HIV RNA in 2003 in a number of blood establishments.

- Since 2005 HBV DNA testing was also included and until the end of 2006 the number of blood transfusion centers performing NAT screening has increased.

- Preliminary data of NAT screening for the period 2003-2006 reveal the following:
PRELIMINARY DATA OF SIMULTANEOUS NAT TESTING
OF BLOOD SAMPLES FOR HCV RNA/ HIV RNA /HBV DNA

TIME PERIOD : 2003 - February 2007

TOTAL OF BLOOD SAMPLES : 348.721

HCV RNA / HIV RNA : 169.694 (49%)

HCV RNA / HIV RNA / HBV DNA : 179.027 (51%)

<table>
<thead>
<tr>
<th>INFECTIOUS MARKER</th>
<th>NAT ID YIELD</th>
<th>Frequency/ million units</th>
<th>Prevalence/ million units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>3</td>
<td>1 / 133.373</td>
<td>7.5</td>
</tr>
<tr>
<td>HCV</td>
<td>8</td>
<td>1 / 50.015</td>
<td>20</td>
</tr>
<tr>
<td>HBV (occult)</td>
<td>38</td>
<td>1 / 6.080</td>
<td>164.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>49</td>
<td>1/189.468</td>
<td>462</td>
</tr>
</tbody>
</table>

Data from SKAE (Madrid, 2007)
RISK PER UNIT OF TRANSMISSION OF MAJOR VIRUSES

<table>
<thead>
<tr>
<th></th>
<th>pre- NAT</th>
<th>MP-NAT</th>
<th>ID-NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>1/1.300.000</td>
<td>1/1.900.000</td>
<td>1/3.000.000</td>
</tr>
<tr>
<td>HCV</td>
<td>1/230.000</td>
<td>1/1.600.00</td>
<td>1/2.300.000</td>
</tr>
<tr>
<td>HBV</td>
<td>1/180.000</td>
<td>1/210.000</td>
<td>1/410.000</td>
</tr>
</tbody>
</table>

H. Klein, Santorini, 2007
OCCULT HBV CASES

| HBV | 38 (occult) | 1 / 6.080 |

INFECTION MARKER

<table>
<thead>
<tr>
<th>Marker</th>
<th>Negative</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg</td>
<td>38 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>anti-HBc</td>
<td>0 (0%)</td>
<td>38 (100%)</td>
</tr>
<tr>
<td>anti-HBs</td>
<td>37 (97.4%)</td>
<td>1 (2.6%)</td>
</tr>
<tr>
<td>anti-HBe</td>
<td>33 (87%)</td>
<td>5 (13%)</td>
</tr>
</tbody>
</table>

HBV DNA consistently30 (80%)
HBV DNA inconsistently8 (20%)

Quatitative PCR in 12 (63%)
Viral load 24-152 copies / ml

Collaborative study for systematic molecular and biochemical characterisation of these infections
Sequencing
Follow up samples
SUMMARY

- The implementation of NAT technology is particularly significant, since it reinforces the safety of blood supply. Introduction of NAT technology shortens the window period between exposure to infection and reactivity by serological assays. Consequently, the residual risk of transmission of HIV, HCV και HBV infection is reduced significantly.

- NAT technology cannot replace serology screening assays for antibodies and/or antigens yet. NAT and serology complement each other.

- Comparison of our results with those from other EU countries demonstrate an increased incidence of NAT yield cases for all three infections. (1 HIV / 133,373, 1 HCV / 50,015 και 1 HBV/ 6,080 blood units) supporting the importance of establishing NAT as a routine screening test in the entire blood supply in Greece.

- Screening in ID–NAT seems to be better compared to screening in MP–NAT, especially in cases with low viral load in combination with high incidence rates of infections.

- NAT yield is usually higher following testing of donations collected from 1st time donors than from repeat donors.
For HBV infection the benefit from MP-NAT implementation seems rather minimal compared to that when performing more sensitive serology HBsAg screenings. It appears that performing ID–NAT, more window period (WP) or occult phase cases may be detected (occult NAT cases), especially in Greece where the last years the prevalence of HBV infection appear to rise.

Due to the high number of donors with OBI missed by HBsAg screening, the probability of having a potentially infectious donation released in the blood supply is higher for HBV than for HCV or HIV.

The benefit of HBV NAT regarding the number of potential infectious units intercepted before donation is clear. The benefit regarding avoided morbidity and mortality should be further evaluated.

The clinical significance of OBI and the impact on donor management should be further studied.