Clinics, Treatment and Prevention of Viral Hepatitis E

Thomas Vanwolleghem, MD PhD
Hepatologist UZA, Antwerpen
Principal Investigator, Erasmus MC, Rotterdam
• HEV Virology
• HEV Transmission and Prevention
• HEV Clinical presentation
• HEV Treatment
• Wrap up
Hepatitis E virus and the global disease burden

- Nonenveloped +sense single stranded RNA virus (27-34 nM)
- 4 major genotypes:
 - 1+2 restricted to humans
 - 3+4 broad host range (zoonotic)

Hepatitis E virus is emerging

- Seroprevalence:
 - Overall ↓ until 2011 (Germany and the Netherlands)
 - ↑ young (largely unexposed) adults
 - ↑ HEV RNA positive blood donations in the Netherlands
 - Oct 2012 – Mar 2013 1:2742
 - Apr 2014 – Sep 2014 1:611

- In Belgium?
 - 2018 planned age-specific seroprevalence study (WIV/ISP, UA, UZA)
 - 2 systematic serum banks obtained in 2006 and 2014

HEV Transmission

Transmission mainly via fecal-oral route

Transfusion: possible
How big is the zoonotic risk?

Identical HEV strain in consumed meat and patients

202(6):825; PNAS, 1997, 94(18):9860

2854 Hepatitis E-virus-RNA in diverse varkensleverproducten

In recent onderzoek naar de bronnen van HEV-infectie bij mensen heeft Sanquin 43 van 55 (78%) leverworsten en 12 van 15 (80%) varkenspatémonsters, afkomstig van diverse producenten, positief getest op HEV-RNA met een PCR-test. De NVWA heeft

How big is the zoonotic risk?

Holland: HEV IgG+
meat vs vegetarians: OR 1.78

UK: HEV IgM+
OR > 2.48-10.12 (P = 0.002)

Slot et al. PLOS ONE 2017; April 27.
Said et al Epidemiol Infect 2014; 144:1467
Zoonotic Risks in Belgium: “Pig Belt”

- 70% of fatteners HEV RNA+
- @ 1 month:
 - serum HEV RNA-
 - faeces HEV RNA+
- transmission to newborn pigs

→ True pig reservoir

Belgium (2010): slaughterhouse

→ 5/23 farms HEV RNA+
→ 8/115 (7%) pigs HEV RNA+

Number of sows by region (2013) - Source: Eurostat

BMC Res Notes, 2012. PLOS one 2011
Zoonotic Risks in Belgium: … and Wildlife

- Wild Boar: 34% HEV IgG+
- Deer: 1-3% HEV IgG+

Wild boar density shot per region (2009-2013)
Minimal infectious dose? Inactivation?

- **MID ?**: Experimental inoculation pigs, rhesus macaque and chimeric mice

- **Inactivation?**

 > 71°C for ≥ 20’: 0/4 pigs infected

<table>
<thead>
<tr>
<th>Group</th>
<th>Temp (°C)</th>
<th>Time</th>
<th>No. of pigs excreting HEV/no. of pigs in group on the following day postinoculation:</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>5</td>
<td>0/3 0/3 0/3 0/3 0/3 2/3 2/3 2/3 1/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3</td>
<td>2/3</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>10</td>
<td>0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>20</td>
<td>0/4 0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>5</td>
<td>0/3 0/3 0/3 0/3 0/3 1/3 1/3 1/3 1/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 2/3 1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>10</td>
<td>0/3 0/3 0/3 0/3 0/3 1/3 1/3 1/3 0/3 2/3 1/3 1/3 1/3 1/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>7</td>
<td>62</td>
<td>5</td>
<td>0/3 0/3 0/3 0/3 0/3 3/3 3/3 3/3 3/3 0/3 1/3 1/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3</td>
<td>3/3</td>
</tr>
<tr>
<td>8</td>
<td>62</td>
<td>20</td>
<td>0/3 0/3 0/3 0/3 0/3 3/3 3/3 3/3 3/3 0/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3</td>
<td>3/3</td>
</tr>
<tr>
<td>10</td>
<td>HEV positive, no heating</td>
<td></td>
<td>0/4 0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>0/6 0/6</td>
<td>0/6</td>
</tr>
</tbody>
</table>

Transfusion?

42% (18/43) recipients infected

Risk of HEV transmission:
RBC < platelets << plasma
~ low/absent HEV IgG
~ higher HEV RNA (p<0.0001)

Absolute risk low: HEV RNA+ donations

The Netherlands 0.037% (17/45,415)
Denmark 0.04% (11/25,637) --> 0 infections
UK 0.04% (79/225,000) --> 18 infections
Japan 0.012% (231/2,000,000)

How to translate this knowledge in Preventive Measures

“Prevention is better than cure.”

Desiderius Erasmus
HEV Prevention

- **HEV vaccine:**
 Chinese HEV genotype 1, not FDA or EMA approved
 4.5 yr efficacy of 86.8% (7 infections in vaccinees, vs 60 in controls)
 Efficacy in HEVgt 3 infections?

- **Zoonotic Risk:**
 SOT recipients: NO liver sausage/paté; shellfish; uncooked pork
 Food processing techniques?

Voorlopig geen leverworst of paté

22 juni 2016

Vanuit Sanquin is voorgesteld om het dieetadvies van orgaan- en allo-stamceltransplantatiepatiënten uit te breiden met het advies om voorlopig geen leverworst of paté te eten in verband met risico's op hepatitis E infecties.

De onderbouwing hiervoor vindt u hieronder en verdere informatie kunt u vinden in de publicatie van Nijskens et al. Journal of Clinical Virology 74 (2016) 82–87
HEV Prevention

- **Blood donation screening? Cost-effective?**

0.2% of all HEV infections in The Netherlands (H Zaaijer)

1 year dietary risk ~ blood from 13 donors (UK)

<table>
<thead>
<tr>
<th>Country</th>
<th>HEV RNA positive donations</th>
<th>Population at risk</th>
<th>Reported TT HEV infections</th>
<th>Screening of blood donations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>allo-HSCT [51] AN (AR/p10mp)</td>
<td>SOT [52] AN (AR/pmp)</td>
<td>Implemented</td>
</tr>
<tr>
<td>Denmark</td>
<td>1:2,331 (2016) [16]</td>
<td>144 (201 – 300)</td>
<td>356 (63.6)</td>
<td>x</td>
</tr>
<tr>
<td>France</td>
<td>1:2,218 (2012–3) [18]</td>
<td>1,724 (201 – 300)</td>
<td>5,141 (79.6)</td>
<td>x</td>
</tr>
<tr>
<td>Germany</td>
<td>1:1,241 (2012) [24]</td>
<td>2,892 (> 300)</td>
<td>3,710 (44.9)</td>
<td>x</td>
</tr>
<tr>
<td>Greece</td>
<td>NA</td>
<td>169 (151 – 200)</td>
<td>171 (15.4)</td>
<td>x</td>
</tr>
<tr>
<td>Ireland</td>
<td>1:2,778 (2016)</td>
<td>77 (151 – 200)</td>
<td>246 (52.3)</td>
<td>x</td>
</tr>
<tr>
<td>Italy</td>
<td>NA</td>
<td>1,625 (201 – 300)</td>
<td>3,252 (53.2)</td>
<td>x</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>1:726 (2016) [7]</td>
<td>1175 (> 300)</td>
<td>1,315 (78.3)</td>
<td>x</td>
</tr>
<tr>
<td>Portugal</td>
<td>NA</td>
<td>137 (101 – 150)</td>
<td>739 (69.7)</td>
<td>x</td>
</tr>
<tr>
<td>Spain</td>
<td>1:3,333 (2014) [53]</td>
<td>1,072 (201 – 300)</td>
<td>4,247 (90.2)</td>
<td>x</td>
</tr>
<tr>
<td>Switzerland</td>
<td>NA</td>
<td>191 (201 – 300)</td>
<td>504 (61.5)</td>
<td>x</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1:1,340–5,000 (2016)</td>
<td>1,602 (201 – 300)</td>
<td>4,561 (71.8)</td>
<td>x</td>
</tr>
</tbody>
</table>

Belgium? Luxemburg?

HEV RNA+ donations = 0.04%

Euro Surveill 2017;22(16):30514; TRANSFUSION 2017;57;267
• HEV Virology
• HEV Transmission and Prevention
• HEV Clinical presentation
• HEV Treatment
• Wrap up
Out of 40 symptomatic Acute HEV patients:

Chronic HEV genotype 3

Chronicity rate = 65.9% in SOT recipients (n=65/85)

HIV
SOT
BMTx
Cancer chemotherapy

“Immunocompetent”: immune suppressive R/undefined CD4 defect

-> Rapid fibrosis progression

NEJM 2012, Blood 2013;122:1079
GASTROENTEROLOGY 2011;140:1481; Hepatology 2014, 60 (3).
Extrahepatic manifestations

Neurological: (~100 cases)
- Guillain-Barre
- Brachial neuritis
- Meningo-encephalitis

Kidney disease:
- Glomerulonephritis
- ± cryoglobulinemia

Replication vs HEV RNA Detection?
Animal models
Seldom HEV negative strand PCR (Placenta)

• HEV Virology
• HEV Transmission and Prevention

• HEV Clinical presentation
• HEV Treatment

• Wrap up
Treatment for chronic HEV

Reduction of immune suppression --> successfull in 32.1%

<table>
<thead>
<tr>
<th>Drug</th>
<th>In vitro effect</th>
<th>In vivo effect</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribavirin</td>
<td>Inhibition of HEV replication</td>
<td>HEV clearance in chronic hepatitis E; occasional cases of treatment failure</td>
<td>Intracellular GTP depletion through inosine 5’-monophosphate dehydrogenase inhibition</td>
</tr>
<tr>
<td>PegIFNα</td>
<td>Inhibition of HEV replication</td>
<td>HEV clearance in chronic hepatitis E</td>
<td>Immune activation</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td>Inhibition of HEV replication</td>
<td>Unknown</td>
<td>Nucleotide analog; inhibition of the viral RNA-dependent RNA polymerase</td>
</tr>
<tr>
<td>Mycophenolic acid</td>
<td>Inhibition of HEV replication</td>
<td>Unclear, possibly associated with HEV clearance in chronic hepatitis E</td>
<td>Intracellular GTP depletion through inosine 5’-monophosphate dehydrogenase inhibition; immune suppression</td>
</tr>
<tr>
<td>Mycophenolic acid prodrug</td>
<td>Inhibition of HEV replication</td>
<td>Unknown</td>
<td>Nucleotide analog; inhibition of the viral RNA-dependent RNA polymerase</td>
</tr>
<tr>
<td>mTOR inhibitors</td>
<td>Stimulation of HEV replication</td>
<td>Higher HEV RNA levels in patients with chronic hepatitis E on mTOR inhibitors</td>
<td>Inhibition of an eIF4E binding protein 1-dependent antiviral signaling pathway downstream of mTOR</td>
</tr>
<tr>
<td>Calcineurin inhibitors</td>
<td>Stimulation of HEV replication</td>
<td>Unknown; tacrolimus use associated with increased risk of viral persistence</td>
<td>Inhibition of cyclophilin A and B</td>
</tr>
</tbody>
</table>

RBV for chronic HEV

Retrospective series (n=59)

 Median 3 months
 Median dose: 600 mg per day (upto 1200mg), ~ 8.1mg/kg
 EOT= 95%
 “SVR24 wks” =78%

 ~ weight based RBV (12 mg/kg): 1000 mg vs 1200 mg (anemia!)

Prediction of response: monitor HEV RNA in stool

 + @ 1 month in 100% of relapsers
 + @ 3 months in 66% of relapsers vs 0% of responders

Conclusions: HEV

- Belgiums HEV transmission risks and preventive measures remain uncertain:
 - HEV present in pig stock and wild boars
 - Immunocompromised: no uncooked pork meat, seafood, liver sausage/liver pate
 - Transfusion: limited contribution to HEV epidemics

- Acute, mostly asymptomatic in immunocompetent
- Possible chronic in immunocompromised
- HEV PCR necessary in immunocompromised

- Treat chronic HEV with RBV
- Relapsers difficult to cure
Acknowledgements

Division of Viral Hepatitis, CDC, USA

Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, USA

Erasmus MC Fellowship 2011
Erasmus MC Pilot Grant 2015

Stichting tegen Kanker
Het congres

Als laatste presenteerde David de uitkomsten van zijn onderzoek naar aandachtscurves van congresgangers.

thomas.vanwolleghem@uza.be
tel 03/8213853