The global prevalence and burden of disease of hepatitis D: a small pathogen with an outsized impact

Dr Alexander Stockdale MBChB PhD MRes MRCP DTM&H
NIHR Clinical Lecturer in Infectious Diseases
University of Liverpool
United Kingdom
Disclosures

None
Hepatitis D

- Small
- Neglected
- May have underappreciated but important role in viral hepatitis morbidity and mortality
NORMAL LIVER

CIRRHOSIS

HCC
Hepatitis D virus?
257-296 million (3.5-3.9%) have chronic hepatitis B globally.
What proportion have HDV infection?
What proportion of liver disease is caused by HDV?

WHO Global Hepatitis Report 2017/2021
Polaris Observatory Lancet Gastroenterol & Hepatol 2018 3:383-403
GLOBAL HEALTH SECTOR STRATEGY ON VIRAL HEPATITIS 2016–2021

TOWARDS ENDING VIRAL HEPATITIS

HDV: 2 references
No epidemiological data

HCV: 44 references, epidemiology, specific targets, strategic plan
Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021

Accountability for the global health sector strategies 2016–2021: actions for impact
Prevalence of hepatitis D virus infection in sub-Saharan Africa: a systematic review and meta-analysis

Alexander J Stockdale, Mas Chaponda, Apostolos Beloukas, Richard Odame Phillips, Philippa C Matthews, Athanasios Papadimitropoulos, Simon King, Laura Bonnett, Anna Maria Geretti

- Included 30 studies
- Primary data from HIV cohorts in Malawi and Ghana

- Method: searches of pubmed, embase and scopus
- General, HIV positive, Liver disease populations
- Pooled proportions by DerSimonian Laird Random effects model

Lancet Global Health 2017; 5: e992-1003
Findings

General Populations:
West Africa: 7.3% (95% CI: 3.6 – 12.2)
Central Africa: 25.6% (12.1 – 42.0)
Southern Africa: 0.1% (0.0 – 1.8)

Liver Disease Populations:
West Africa: 9.6% (2.3 - 20.4)
Central Africa: 37.8% (12.1- 67.5)
Southern Africa: No data
Summary: HDV in sub-Saharan Africa

- High endemicity in central > west Africa
- Limited data in southern/east Africa
- HDV may be an important contributor to HBV-associated disease in sub-Saharan Africa
Challenges: HDV epidemiology

- Large sample sizes (especially if low HBV prevalence)
- Variable awareness, selection or referral bias
- Rarely tested in LMIC, especially outside tertiary centres
- Bias may be compounded by HBV and HDV selection
- Resampling of high prevalence regions
- Consideration of population weighting
- Importance of well-characterised liver disease populations - underestimation from general populations
- Lack of historical standardisation of HDV PCR assays
Diagnosis of HDV

Exposure

Anti-HDV

Infection

HDV RNA
The global prevalence of hepatitis D virus infection: Systematic review and meta-analysis

Alexander J. Stockdale¹,², Benno Kreuels³,⁴, Marc Y.R. Henrion²,⁵, Emanuele Giorgi⁶, Irene Kyomuhangi⁶, Catherine de Martel⁷, Yvan Hutin⁸, Anna Maria Geretti¹,*

¹Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom; ²Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi; ³College of Medicine, Blantyre, Malawi; ⁴University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; ⁵Liverpool School of Tropical Medicine, Liverpool, United Kingdom; ⁶Centre for Health Informatics, Computing, and Statistics, University of Lancaster, Lancaster, United Kingdom; ⁷International Agency for Research on Cancer, Lyon, France; ⁸World Health Organization, Geneva, Switzerland

J Hepatol 2020; 73:523-532
Global HDV prevalence: Methods

Primary outcome: Total or IgG anti-HDV in 3 key populations
1. General populations
2. Liver disease populations
3. At risk groups

WHO region/ country level
Inclusion criteria

• Studies or abstracts reporting anti-HDV which described the *geographic* and *clinical* setting of participants
• All eligible consenting participants tested, or representative subset
Exclusions

- Studies <1988 (>20 years ago)
- Anti-HDV IgM or HDAg
- HDV RNA unselected, without testing for anti-HDV
- Acute hepatitis
- Repeat blood donors
- Remunerated blood donors
- Migrant populations
- Children <18 months (maternal Ab transfer)
- Liver transplant recipients or registers
- Duplicate or overlapping data
Search

- EMBASE, Pubmed, Scopus
- Broad search terms: HDV and diagnostic/epidemiological terms
- Grey literature: Global Health data exchange, Ministry of Health/ Public Health Organisation websites, UNICEF multiple cluster surveys, DHS programmes
Quality assessment

1. Adequacy of description of inclusion/exclusion criteria
2. Recruitment methodology
3. Assessment of risk of bias
Statistical methods

- HDV prevalence among HBsAg carriers modelled using a binomial mixed model
- Principle component analysis derived quality score used to weight the likelihood function
- Predictions for HDV prevalence: weighting for quality and size of the represented population
- Provisional population attributable fraction estimate = Prevalence (cases) * (OR-1/ OR) (cases vs controls)
2104 potentially eligible studies identified for abstract review from search of PubMed, EMBASE and Scopus after removal of duplicates

1359 studies excluded after abstract review:

- 316 basic science, animal or pre-clinical
- 304 review, comment or editorial
- 196 did not test for hepatitis D
- 160 treatment evaluation
- 99 hepatitis D cohort study
- 74 diagnostic test development
- 52 case report or case series
- 43 acute hepatitis
- 41 genotypic data only
- 24 clinical guidelines
- 17 study of migrants
- 16 histological studies
- 8 liver transplantation cohort
- 6 mathematical modelling
- 3 duplicate data
745 studies reviewed in full and 5 additional studies identified from review of references

462 studies excluded after in-depth screening:

- 109 duplicate or overlapping data
- 92 insufficient data provided
- 76 non-random or unrepresentative sample
- 42 review, comment or editorial
- 32 hepatitis D cohort or case-control
- 25 did not test for hepatitis D
- 21 IgM or HD Ag or HDV RNA only used
- 17 genotypic data only
- 17 liver transplantation
- 16 acute hepatitis
- 6 did not test people with HBsAg
- 4 required detectable HBV DNA
- 2 study of migrants
- 2 conducted prior to 1990
- 1 mathematical model

283 studies eligible for inclusion
General populations
Liver disease populations
Included studies

- 376 samples from 95 countries:
 - 155 general populations
 - 137 hepatology clinics
 - 85 selected risk groups
 - 19 isolated populations

- 120,293 people with HBsAg tested for anti-HDV
- 5065 anti-HDV positive people tested for HDV RNA by PCR
General Population estimates
Table 1. Estimated anti-HDV prevalence in general and hepatology clinic HBsAg-positive populations, by WHO region.

<table>
<thead>
<tr>
<th>WHO region</th>
<th>HBsAg-positive populations</th>
<th>General</th>
<th>Hepatology clinics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (95% CI)</td>
<td>% (95% CI)</td>
<td></td>
</tr>
<tr>
<td>AFR</td>
<td>5.97 (4.98–7.24)</td>
<td>12.26 (10.13–14.70)</td>
<td></td>
</tr>
<tr>
<td>AMR</td>
<td>5.91 (3.02–9.71)</td>
<td>3.34 (2.58–4.21)</td>
<td></td>
</tr>
<tr>
<td>EMR</td>
<td>3.54 (2.10–6.28)</td>
<td>17.36 (11.15–26.34)</td>
<td></td>
</tr>
<tr>
<td>EUR</td>
<td>3.00 (2.09–4.21)</td>
<td>19.48 (17.31–21.76)</td>
<td></td>
</tr>
<tr>
<td>SEAR</td>
<td>3.20 (0.36–12.4)</td>
<td>4.00 (3.09–5.15)</td>
<td></td>
</tr>
<tr>
<td>WPR</td>
<td>4.09 (3.47–4.77)</td>
<td>8.07 (7.50–8.64)</td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>4.49 (3.57–5.68)</td>
<td>16.42 (14.58–18.56)</td>
<td></td>
</tr>
</tbody>
</table>

AFR, African Region; AMR, Region of the Americas; EMR, Eastern Mediterranean Region; EUR, European Region; SEAR, South-East Asian Region; WHO, World Health Organisation; WPR, Western Pacific Region.
<table>
<thead>
<tr>
<th>Group</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>People who inject drugs</td>
<td>19.00 (12.26, 29.45)</td>
</tr>
<tr>
<td>33 samples (I² = 86.7%, τ² = 1.16)</td>
<td></td>
</tr>
<tr>
<td>Commercial sex workers</td>
<td>18.70 (6.70, 52.17)</td>
</tr>
<tr>
<td>5 samples (I² = 91.5%, τ² = 1.19)</td>
<td></td>
</tr>
<tr>
<td>Men who have sex with men</td>
<td>16.00 (3.94, 64.92)</td>
</tr>
<tr>
<td>2 samples (I² = 0.0%, τ² = 0.0)</td>
<td></td>
</tr>
<tr>
<td>Haemodialysis recipients</td>
<td>3.42 (1.38, 8.48)</td>
</tr>
<tr>
<td>11 samples (I² = 21.0%, τ² = 0.49)</td>
<td></td>
</tr>
<tr>
<td>HIV, excluding generalised epidemics</td>
<td>6.57 (4.08, 10.59)</td>
</tr>
<tr>
<td>18 samples (I² = 74.4%, τ² = 0.56)</td>
<td></td>
</tr>
<tr>
<td>Hepatitis C virus infection</td>
<td>10.02 (5.49, 18.26)</td>
</tr>
<tr>
<td>17 samples (I² = 90.7%, τ² = 1.21)</td>
<td></td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>6.68 (4.37, 10.20)</td>
</tr>
<tr>
<td>29 samples (I² = 77.2%, τ² = 0.85)</td>
<td></td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>4.80 (3.18, 7.26)</td>
</tr>
<tr>
<td>20 samples (I² = 38.4%, τ² = 0.26)</td>
<td></td>
</tr>
</tbody>
</table>
Population attributable fraction

- Provisional estimates:
 - Cirrhosis = 18% (95% CI 10 – 26)
 - (29 samples, 19 countries)

- HCC = 20% (95% CI 8 – 33)
- (20 samples, 13 countries)
Conclusions

• Small virus, big impact
• HDV epidemiology is challenging
• High HDV endemicity in Central Europe, Central and West Africa, Mongolia, Pakistan, Amerindian populations
• HDV strongly associated with cirrhosis and HCC
• Limited temporal data
• Need for improved surveillance of HDV particularly in North and East/ Southern Africa, Americas
Recommendations

- Reflex testing for anti-HDV in new diagnosis of HBV
 - Improve epidemiological estimates
 - Correct classification of HBV disease
- Genotype specific data
- Need for improved surveillance of HDV particularly in North America, South America, North and Southern Africa
Acknowledgements

Dr Benno Kreuels, University of Hamburg, Germany
Dr Marc Henrion, Liverpool School of Tropical Medicine, UK
Dr Emanuele Giorgi, University of Lancaster, UK
Dr Irene Kyomuhangi, University of Lancaster, UK
Dr Yvan Hutin, World Health Organisation
Dr Catherine de Martel, IARC, Lyon, France
Prof Anna Maria Geretti, University of Liverpool, UK
Any questions?