

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid, Welzijn en Sport

Influencing factors on long-term protection of hepatitis B after infant vaccination

Marianne AB van der Sande

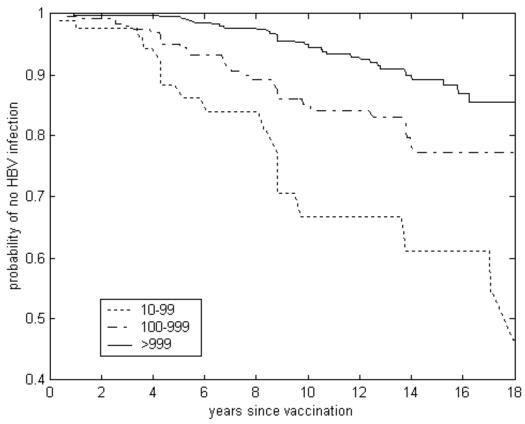
Head Epidemiology & Surveillance Centre Infectious Disease Control RIVM, Bilthoven, the Netherlands

Associate Professor Utrecht University, the Netherlands

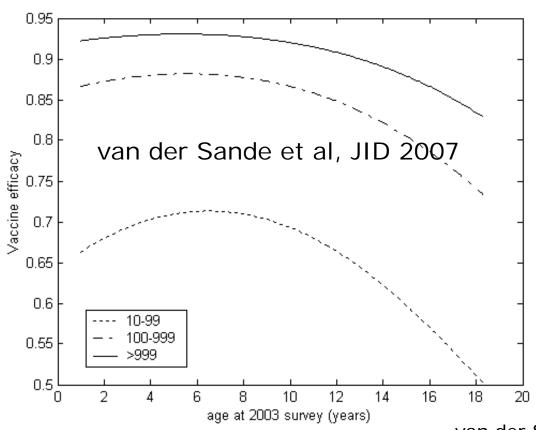
17 November 2011 Marianne van der Sande, RIVM

The Gambia: Keneba-Manduar & GHIS cohorts

- Long term: high-risk periods
 - Early childhood (horizontal transmission)
 - Adolescence & Adulthood (sexual transmission)
 - Occupational exposure
 - Travel
- Protection
 - Response to vaccination (sAb)
 - (Transient) infection (cAb)
 - Chronic infection (sAg/eAg, DNA)
 - Clinical outcomes (cirrhosis, HCC)


- Response to vaccination (sAb) :
 - Vaccin: type of vaccin, route of administration, number of doses, amount of Ag, adjuvant, interaction other vaccines, other infections
 - Vaccinee: age, sex, BMI, immunocompetence, smoking, genetics
 - Virus: genotype, mutant
 - Maternal status: VL, eAg
- Outcome:
 - > Seroconversion y/n (≥10iU/L)
 - > Peak sAb titre

- Response to vaccination (sAb)
 - type of vaccin, route of administration, number of doses, amount of Ag, adjuvant, interaction other vaccines, other infections
 - age, sex, BMI, immunocompetence, smoking, genetics
 - genotype, mutant
 - VL, eAg
- (Transient) infection (cAb)
 - Peak sAb
 - Time since last dose
- Chronic infection (sAg/eAg, DNA)
- Clinical outcomes (cirrhosis, HCC)



Probability of remaining uninfected (anti-HBcore neg) by time since infant vaccination by peak anti-HBs response

Vaccine efficacy against anti-HBcore infection by age by peak bleed anti-HBs category among primary responders

- Response to vaccination (sAb):
 - type of vaccin, route of administration, number of doses, amount of Ag, adjuvant, interaction other vaccines, other infections
 - age, sex, BMI, immunocompetence, smoking, genetics
 - genotype, mutant
 - VL, eAg
- (Transient) infection (cAb)
 - Peak sAb
 - Time since last dose
- Chronic infection (sAg/eAg, DNA)
 - Age at time of acquisition
- Clinical outcomes (cirrhosis, HCC)

- (peak)sAb:
 - >95% primary response (≥10iU/L)
 - decline over time:
 - 1/3-2/3 detectable sAb after 15-20 years
 - GMT ↓
 - Environment: natural boosting due to exposure
 - Primary responders 2x as likely to have anamnestic response when boosted
- (Transient) infection (cAb)
 - 5-20% BTI after 15-20 years
- Chronic infection (sAg/eAg, DNA)
 - <1% after 15-20 years</p>
- Clinical outcomes (cirrhosis, HCC)
 - ?

Number of doses

- HBV vaccination combined in infant hexavalent vaccination
 - Move towards 2+1 rather than 3+1
- Immunological theory and mathematical modelling suggest 2 (or even 1 dose) could offer similar protection:
 - If memory develops indirectly through effector cell activation: more doses would confer better protection
 - If memory develops following clonal expansion, independent of number of doses: no benefit from additional doses
- Several studies among adults and adolescents have shown similar long-term protection after 2 (or 1 dose) as with 3 doses
- Non-responders = slow responders?

Do we need 3 doses?

Van der Sande et al PLoS One 2007

- Observational study within Keneba Manduar open cohort
- All infants born 1984 onwards were scheduled to receive at least 3 doses (1-2-4 months of age), but some only received 2 doses
 - Travel, migration, death
- At 11 months of age peak antibody levels measured
- Different vaccins, different schedules in use since 1984
- Follow up every 4 years (sAb, cAb)

Do we need 3 doses?

Van der Sande et al PLoS One 2007

	2 doses	3 doses	р
n	89	575	
Median age (wks) 1st dose	8.3	4.1	0.01
Median age (wks) last dose	16.4	16.9	0.3
GMT peak sAb	158	491	0.03
Median age (yrs) follow up	7.0	4.3	0.02
Undetectable sAb (%) follow up	32	33	0.4
GMT follow up sAb	175	102	0.3

Do we need 3 doses?

Van der Sande et al PLoS One 2007

	Infected (cAb)	VE infection	Chronic infection (sAg)	VE chronic
prevaccination	61%		20%	
1 dose	19%	69%	0%	
2 dose	8%	86%	1.6%	92%
3 dose	7%	88%	1.7%	92%
4 dose	9%	85%	0.9%	86%

Discussion

- sAb wanes, but boosting mostly produces rapid response
- Risk of infection increases with time since vaccination, chronic infections (still) rare
- 2 doses might be as effective as 3 doses to achieve primary response /protection against infection
- How much does lasting protection depend on ongoing natural boosting?

Acknowledgements

- MRC The Gambia
 - Hilton Whittle, Andy Hall, Pauline Kaye, Maimuna Mendy, David Jeffries, Branwen Hennig
 - Keneba and Fajara field, data and lab staff
- RIVM The Netherlands
 - Roel Coutinho, Susan Hahné, Hein Boot, Femke Koedijk, Jim van Steenbergen, Christian Hoebe, Iris van Ouwerkerk
- IARC Lyon France
 - Pierre Hainaut