Long-term persistence of T cell memory in Italian vaccinees

Mario (Mago) Clerici

Head, Department of Medical Sciences and Biotechnologies
Head, Doctorate School in Molecular Medicine
University of Milano

Scientific Director
IRCCS Fondazione Don Gnocchi
Milano, Italy

Milano, VHPB Meeting, Novembre 2011
What is immunological memory?

Memory is a modification of the frequency and the properties of antigen-specific lymphocytes that persists after antigen is eliminated.

Memory has two properties carried out by different cells:

- Immediate protection
 - Plasma cells and antibodies
 - Effector memory and Terminally differentiated T

- Secondary responses
 - Memory B cells
 - Central memory T

1. How are memory cells generated?
2. How are they maintained for our lifetime?
Lymphoid Tissue

- Central
 - Bone marrow
 - Thymus
- Secondary
 - Spleen
 - Lymph nodes
 - GALT (gut associated lymphatic tissue)
 - Tonsils
 - Peyer’s patches
 - Appendix
LYMPHOCYTES: MEMORY/NAIVE

B LYMPHOCYTES: Naive: IgM and IgD
Memory IgG

T LYMPHOCYTES: Naive: CD45RA/CD62L-
Memory: CD45RO
Different patterns of co-expression of CCR7 and the isoforms of CD45 allow the differentiation of different subsets of memory and naive cells.
TWO SUBSETS OF MEMORY T LYMPHOCYTES WITH DISTINCT HOMING POTENTIAL AND EFFECTOR FUNCTIONS.

CD4+ and CD8+ T cells.

CCR7+ CD45RA+ T naive

CCR7+ CD45RA- T_{CM} central memory

CCR7- CD45RA- T_{EM} effector memory

CCR7- CD45RA+ T_{TD} terminally differentiated
Naive T
CD45RA+ CCR7+

Primary

APC

Ag

Effector Memory T
CD45RA- CCR7-

High antigen load

Central Memory T
CD45RA- CCR7+

Low antigen load

Secondary

Terminally-differentiated Effectors (TD)
CD45RA+ CCR7-

Effector Memory T
CD45RA- CCR7-
Homeostasis of memory T cells

secondary lymphoid organs

Naïve T

Central memory T

Antigen+ cytokines

peripheral tissues

Effector memory T and Terminally differentiated

persisting antigen
The localization of CCR7+ and CCR7- cells is different

• CCR7+ cells (Naive and CM) are prevalent in lymph nodes
• CCR7- cells (EM and TD) are dominant in tissues and peripheral blood.
Division of labour among memory T cells

secondary lymphoid organs

- **Naive T**
 - Home to lymph nodes
 - DC and B cell help
 - Precursors of effectors

- **Ag-cyto**

- **Central memory T**
 - Secondary responses
 - “Protective memory”

- **Effector memory T** and Terminally differentiated
 - Home to non-lymphoid tissues
 - Immediate effector function (cytokines, cytotoxicity)

peripheral tissues

- **Ag-cyto**

- **Effector memory T**
 - Immediate protection
 - “Reactive memory”
Human CD8 T cell subsets

Naive
- CD45RA⁺ CD27⁺
- CCR7⁺ CD62L⁺

Central memory
- CD45RA⁻ CD27⁺
- CCR7⁺ CD62L⁺

Effector memory
- CD45RA⁻ CD27⁻
- CCR7⁻ CD62L⁻

Effector memory RA⁺
and **Terminally differentiated**
- CD45RA⁺ CD27⁻
- CCR7⁻ CD62L⁻

- **Proliferation**
- **IL-2 production**
- **Cytokine (IFN-γ) production and cytotoxicity**
- **Cytoxicity**
- **Death ?**
Persistence of Anti-HBs Antibody and Immunologic Memory for Hepatitis B Surface Antigen in Two Cohorts of Children Immunised with Hexavalent Vaccines: Implication for Policy and Booster Vaccination – Immunologic study

D. Trabattoni, L. Romanò, M. Pacei, A. Zanetti, M. Clerici
In Europe two vaccines, Hexavac® (Sanofi Pasteur, MSD) and Infanrix®-hexa (GlaxoSmithKline) were licenced for use in October 2000.

Both vaccines protect against diphtheria, tetanus, pertussis, poliomyelitis, Haemophilus influenzae type b and hepatitis B.

In Sept 2005, following the observation of a reduced immunogenicity of the hepatitis B component in the Hexavac® EMA recommended the withdrawal of Hexavac® from the market.
A multicenter study was carried out to investigate whether vaccinated children could respond to a booster dose of hepatitis B vaccine 5 years after primary immunization.

- To evaluate if the decline in antibody titers under protective threshold (10 mIU/ml), observed in children receiving Hexavac®, reflects a loss of immune memory.

- To demonstrate whether T cell memory persist even when serum antibodies decline.
Materials and Methods

- 105 subjects, 65 Hexavac® and 40 Infanrix® were enrolled.

- Antigen specific T cell responses and T memory subsets were evaluated 5 years after HBV vaccination.

Data were analysed comparing:
- Infanrix- vs Hexavac-vaccinated subjects and
- Subdividing children on the base of humoral responses to the vaccines: Responder (anti-HBV Ab titles >10mIU/ml); Non Responder (anti-HBV Ab titles <10mIU/ml).
Results: Naive, Central Memory, Effector Memory and Terminally Differentiated CD4+ T cells

Naive, CM, EM and TD CD4+ T cells were similar in Hexavac- and Infanrix-vaccinated children
Results: Naive, Central Memory, Effector Memory and Terminally Differentiated CD8+ T cells

Naive CD8+ T cells were higher, CM, EM and TD cells were lower in Hexavac- compared to Infanrix-vaccinated children
Results: HBV-specific Naive, Central Memory, Effector Memory and Terminally Differentiated CD8+ T cells

HBV-specific Naive and CM CD8+ T cells were higher, EM and TD were lower in Hexavax- compared to Infanrix-vaccinated children
Results: HBV-specific IFNγ-secreting CD8+ T cells

HBV-specific IFNγ-secreting CD8+ T cells were lower in Hexavac-compared to Infanrix-vaccinated children.
Results: Naive, Central Memory, Effector Memory and Terminally Differentiated CD4+ T cells

Naive, CM, EM and TD CD4+ T cells were similar in Responders and Non Responders
Results: Naive, Central Memory, Effector Memory and Terminally Differentiated CD8+ T cells

Naive CD8+ T cells were lower, EM and TD were higher in Responders
Results: HBV-specific Naive, Central Memory, Effector Memory and Terminally Differentiated CD4+ T cells

Naive, CM, EM and TD CD4+ T cells were similar in Responders and Non Responders.
Results: HBV-specific Naive, Central Memory, Effector Memory and Terminally Differentiated CD8+ T cells

Naive cells were lower, CM and EM were higher in Responders
Results: HBV-specific IFNγ-secreting CD8+ T cells

HBV-specific IFNγ-secreting CD8+ T cells were augmented in Responders
Conclusions

• T cell memory is extremely complex and still very unclear.
• HBV specific memory T cells are detected in peripheral blood >5 years after vaccination.
• The reduced efficacy, as well as the lack of Ab-measured immunogenicity of a vaccine are reflected in alterations of the different circulating subsets of memory T cells.