Molecular genetic characterization of hepatitis epidemiology in Latvia

Irina Somiskaya
Paul Pumpens

Riga 2015
Sequencing of viral genes and complete viral genomes

Results in:

• identification of viral genotype/subtype/mutants

• specification of diagnosis and prognosis

• elaboration of an optimal treatment strategy

and allow to follow the treatment efficacy
HBV genotypes predominant in Latvia
HBV genotypes predominant in Latvia

Sominskaya et al,
Open Hep. 2011
Mutants - result of external influences:
chemical reagents
radiation,
temperature
immune pressure

Variants - naturally occurring changes

“Quasispecies” - whole of mutants/variants
coexisting in a cell

Main classes of mutations

Immune escape mutants
Therapy escape mutants
Diagnosis escape mutants
Vaccine escape mutants
Hepatitis B virus
Mutants in Latvia

- preS1: Hepatocyte binding
- preS2: Hepatocyte binding?
- S: major B cell epitope “a”
- P: drug resistance

Identified in patients with acute fulminant chronic HBV infections. Special sort - mutants in immunosuppressed patients.
Basic core promoter mutation

Results in:
- increased host immune response
- diminished production of HBeAg
- increased viral replication and enhanced disease activity

is typical for:
- chronic hepatitis
- fulminant hepatitis
- immunosuppressed patients

Mutations: phase I

• diminished production of HBeAg
• increased host immune response
• increased viral replication and enhanced disease activity

is typical for:
- chronic hepatitis
- fulminant hepatitis
- immunosuppressed patients
Mutations: phase II
Elimination of HBe

preC mutations
1896 G - A (TAG)
1814, 1815 initiation codon
1874 nonsense
1862 missense frameshifts

pre-C stop mutation
• related to core gene mutations/deletions, which are associated with disease activity
• decreased interferon-alpha responsiveness
• associated with fulminant hepatitis (but not determining it!)

Chronic active Asymptomatic carriers
Core mutations correlate with the pre-core stop mutation active liver disease

mid-core deletions

- decrease recognition by CTLs
- contribute to immune escape
- diminish host response to alpha-interferon therapy
Mutations: immune escape are important for
• HBV prevention (vaccination)
• diagnosis

• 2% to 3% produce escape mutants increase the risk of perinatal HBV transmission are typical liver post-transplantation event (up to 50%)
• Full prevention of synthesis of the MHBs
• Point mutations, deletions, insertions
• Chronic hepatitis
• Fulminant hepatitis?
• HCC? (MHBs transactivation)

Del 17-22 aa
resistance to nucleoside analogues

- 1 of 10 patients exhibited YMDD variant at 24 weeks post-transplantation
- 14 to 32% of immuno-competent patients developed YMDD variant after 36 weeks of lamivudine treatment

Lamivudine resistance

YMDD - M552V
M552I
Domain B - L528M
Patient N1

<table>
<thead>
<tr>
<th></th>
<th>PreS1</th>
<th>PreS2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Reference</td>
<td>ACCIIQTLPANPPASTNRQSCQQTPTLDPDRLTHQAMQNSSTTPHQLDDRRVGLYFDAGSSSCTVN</td>
<td></td>
</tr>
</tbody>
</table>

2007.10.31,
- **Lamivudine treatment**,
- **viral load** 4.87 E2 IU/ml

<table>
<thead>
<tr>
<th>10-12752</th>
<th>01</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-12752</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>10-12752</td>
<td>05</td>
<td>06</td>
</tr>
<tr>
<td>10-12752</td>
<td>07</td>
<td>08</td>
</tr>
<tr>
<td>10-12752</td>
<td>09</td>
<td>10</td>
</tr>
<tr>
<td>10-12752</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>10-12752</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

2008.08.08,
- **Lamivudine treatment**,
- **viral load** 1.36 E4 IU/ml

<table>
<thead>
<tr>
<th>8-3248</th>
<th>01</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-3248</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>8-3248</td>
<td>05</td>
<td>06</td>
</tr>
<tr>
<td>8-3248</td>
<td>07</td>
<td>08</td>
</tr>
<tr>
<td>8-3248</td>
<td>09</td>
<td>10</td>
</tr>
</tbody>
</table>

2008.12.29,
- **Lamivudine treatment**,
- **viral load** 3.59 E7 IU/ml

<table>
<thead>
<tr>
<th>12-10333</th>
<th>01</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-10333</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>12-10333</td>
<td>05</td>
<td>06</td>
</tr>
<tr>
<td>12-10333</td>
<td>07</td>
<td>08</td>
</tr>
<tr>
<td>12-10333</td>
<td>09</td>
<td>10</td>
</tr>
</tbody>
</table>
Mutations: gene X

1 154

HCC

- deletions 128-130
- 130-132
- mutations 130
- 131
- truncation

Silent (HBs neg)

- substitutions

Fulminant
Hepatitis B Virus Variants in Long-Term Immunosuppressed Renal Transplant Patients in Latvia

Intervirology 2005;48:192–200
DOI: 10.1159/000081748

Hepatitis B and C Virus Variants in Long-Term Immunosuppressed Renal Transplant Patients in Latvia

Irina Sominskayaa, Marija Mihailovaa, Juris Jansonsa, Viktorija Emelyanovaa, Inese Folkmaneb, Eriks Smagrisb, Uga Dumpisb, Rafails Rozentalsb, Paul Pumpensa

aBiomedical Research and Study Centre, University of Latvia, and bStradins University Hospital, Riga, Latvia
An unusually high number of HBV and HCV infections was recorded in a Latvian paediatric oncology ward during the time period 1996–2000.

Serum samples from 45 such patients and 3 from infected medical personnel were used for the study.

- The use of multidose vials of isotonic solution for washing intravenous catheters and preparation of intravenous injections was common at the time of infection of all patients.
- Changing of gloves after each patient was not strictly adhered to either.
An Outbreak of HBV and HCV Infection in a Paediatric Oncology Ward: Epidemiological Investigations and Prevention of Further Spread

Unrooted maximum likelihood (ML) phylogenetic tree of HBV core sequences

Unrooted maximum likelihood (ML) phylogenetic tree of HCV core sequences
Juris Jansons
Maria Mihailova
Arzu Algulijeva
Svetlana Lubina
Diana Legzdina
Irina Sominskaya
Paul Pumpens

Ludmila Viksna
Valentina Sondore
Frida Arsha
Uga Dumpis
Rafails Rozentals