The potential prevention benefits of a treat-all hepatitis C treatment strategy at global, regional, and country levels: a modelling study

15th October 2020 – Viral Hepatitis Prevention Board meeting on treatment as prevention

Adam Trickey
Population Health Sciences, University of Bristol, Bristol, UK
Hepatitis C virus (HCV) epidemic

- Highly effective direct acting antivirals (DAAs) have been developed as treatment for hepatitis C virus (HCV) infection
- An estimated 71 million people are infected with HCV globally
- The WHO has set targets to eliminate HCV by 2030
 - Includes reducing incidence by 80% from 2015 levels

- Main modes of transmission: injecting drug use, unsafe medical injections and procedures, and vertical transmission
 - Injecting drug use important in many settings¹
 - Unsafe medical procedures important mostly in low- and middle-income settings²

¹: The contribution of injection drug use to hepatitis C virus transmission globally, regionally, and at country level: a modelling study. Trickey et al, 2019
Treatment as prevention and aims

- Many countries are developing strategies to scale-up treatment
- **Some countries have treatment guidelines excluding people with substance use issues or limit treatment to those with advanced liver disease**
- How do we treat to prevent transmission?
 - Target high risk groups?
 - What prevention gains do we achieve from a treat all strategy?

- We **aimed** to estimate the number of infections averted by treating people with chronic HCV, for several strategies:
 - Treat all
 - Treat people who inject drugs (PWID)
 - Treat older age groups
 - Treat people with advanced liver disease
Model description

• A dynamic, deterministic model of HCV transmission for simulating country-level HCV epidemics among:
 • PWID
 • the general population

• Incorporates:
 • population growth
 • ageing
 • demographics
 • disease progression
 • injecting drug use
 • vertical HCV transmission
 • historical treatment numbers
Schematic of age and injecting status
Schematic of HCV infection, treatment and disease progression
Model parameterization

- Demographic information: UN datasets
- Key parameters and bounds from various systematic reviews:
 - HCV prevalence among general population¹
 - HCV prevalence among PWID²
 - Proportion of adults that are PWID²
- Countries included if data were available on all three key parameters
- Model accounted for uncertainty in parameters for each country

- Model uses historical country-level treatment data taken from a range of sources (mostly the Center for Disease Analysis: https://cdafound.org/polaris/)

1: Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Blach et al, 2017
2: Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: a multistage systematic review. Degenhardt et al, 2017
Key model assumptions

• Decreasing HCV epidemics among general population (around 1% per year)
 - due to evidence from countries with 2 surveys
• Stable HCV epidemics among PWID
• Stable proportion of adults that are PWID
 • except in Eastern Europe and Sub-Saharan Africa: increasing

• Assumptions investigated in many sensitivity analyses

1: Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Blach et al, 2017
2: Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: a multistage systematic review. Degenhardt et al, 2017
Mathematical model scenarios

• The model was run 2018-2038 (1000 model fits for each country)
• Firstly with that country’s baseline level of treatment (counterfactual)
• And then with **50 additional individuals being treated in 2018**
 • Treat all – individuals randomly selected from all infected individuals
 • Treat PWID – selected randomly from PWID
 • Treat older age groups – selected randomly from people ≥35 years
 • Treat people advanced liver disease – selected randomly from people with cirrhosis
 • Infected individuals can overlap between categories
• Track benefits to 2038 with baseline treatments from 2018 continued
• Low number of 50 treatments chosen to give an estimate of prevention benefit without altering each country’s epidemic trajectory
Determinants of infections averted

• To investigate the determinants of the number of infections averted per treatment we used **univariable and multivariable linear regression analyses** of country-level characteristics:
 • Current population growth rates
 • Population-attributable fraction of IDU to HCV transmission (from Trickey et al\(^1\))
 • Population proportion of PWID among adults\(^2\)
 • Average duration of IDU
 • HCV prevalence among IDU
 • HCV prevalence among PWID
 • HCV prevalence among the general population

• We did this for the infections averted in the treat all and PWID scenarios

1: The contribution of injection drug use to hepatitis C virus transmission globally, regionally, and at country level: a modelling study. Trickey et al, 2019
2: Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: a multistage systematic review. Degenhardt et al, 2017
Countries included

- 88 countries were modelled that had the required data (85% of world’s population)
Global results summary

• Similar numbers of infections averted per treatment for treat all, cirrhosis, and age ≥35 years strategies – much higher for PWID

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Global average HCV infections averted 2018-2038 per treatment Median (95% credibility intervals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat all (random selection)</td>
<td>0.35 (0.16, 0.61)</td>
</tr>
<tr>
<td>People aged ≥35 years</td>
<td>0.30 (0.12, 0.53)</td>
</tr>
<tr>
<td>People with cirrhosis</td>
<td>0.28 (0.12, 0.49)</td>
</tr>
<tr>
<td>PWID</td>
<td>1.27 (0.68, 2.04)</td>
</tr>
</tbody>
</table>

• Extra analyses (with similar methods) suggest that from the 1.5 million HCV treatment globally in 2018, **525,764 (95%Crl: 243,948-980,523)** chronic HCV infections would be averted over the next 20 years
Regional variation

• Less infections averted in high-income countries (HICs) than low- and middle-income countries (LMICs)

• Eastern Europe appears to have the least benefit of treatment as prevention, followed by Latin America

• Sub Saharan Africa and South Asia see the biggest benefit
Determinants of infections averted

• For both the random allocation (treat all) strategy and the PWID strategy, the infections averted is associated with:
 • Increases ↑ with a country’s population growth-rate
 • Increases ↑ with the proportion of adults that are PWID
 • Decreases ↓ with HCV prevalence in the general population
 • Decreases ↓ with HCV prevalence in PWID
Treat all strategy

PWID strategy

\[R^2 = 0.3592 \]

\[R^2 = 0.2534 \]

\[R^2 = 0.2702 \]

\[R^2 = 0.6582 \]
Sensitivity analyses

- Each strategy averts more infections if the gen-pop HCV prevalence is stable instead of decreasing: 0.55 (95%CrI: 0.36-0.77) (vs 0.35)
- More infections averted if we assume regional epidemic trajectories differ based on CDA analyses¹: 0.65 (95%CrI: 0.30-1.10) (vs 0.35)
- Halving background treatment rates among PWID and doubling among people with cirrhosis produces a similar number of infections averted compared with the baseline projections
- Including only the countries with ≥2 key prevalence parameters scored as moderate or better quality, the IA per treatment was similar

¹: Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Blach et al, 2017
Limitations

• Taking data from disparate sources can create imprecise results but overall trends should be robust

• **Data!**
 • Data unavailable for many countries (particularly Africa)
 • Not necessarily high quality data

• Migration not included – lack of data

• Different coverage rates of treatment may have different effects

• Assumes random mixing rather than actual networks among PWID – previous research suggests random mixing may overestimate treatment as prevention and that post-treatment behavioural changes are important¹

• Assumptions about directions of epidemics:
 • Only 3 countries had 2 robust, comparable general population estimates
 • Investigated in sensitivity analyses

¹: Impact of Hepatitis C Treatment as Prevention for People Who Inject Drugs is sensitive to contact network structure. Metzig et al, 2017
Implications

• Prevention benefits can be achieved from a random treat all strategy

• Globally, more prevention benefits are achieved through targeting PWID (high incidence groups)

• High incidence groups drive the impact of treatment as prevention
 • Countries should not exclude people with substance use from HCV treatment

• Treating only those with advanced disease has less impact in terms of treatment as prevention than a treat-all strategy (however, other factors also important)

• Regardless of strategy, higher impact is achieved in countries with high population growth, more PWID, and lower HCV prevalence

• WHO now advocates a treat-all strategy, partially based on the impact of treatment as prevention¹

¹: Guidelines for the care and treatment of persons diagnosed with chronic hepatitis C virus infection. WHO, 2018
Published in the Journal of Viral Hepatitis: “Modelling the potential prevention benefits of a treat-all hepatitis C treatment strategy at global, regional and country levels: A modelling study” by Trickey et al, 2019

Also published as an annex to the 2018 WHO guidelines for the care and treatment of persons diagnosed with chronic hepatitis C virus infection

With thanks to: Hannah Fraser, Aaron Lim, Josephine Walker, Amy Peacock, Samantha Colledge, Janni Leung, Jason Grebely, Sarah Larney, Natasha K Martin, Louisa Degenhardt, Matthew Hickman, Margaret T May, Peter Vickerman

I have no conflicts of interest to disclose.

Funded by the UK National Institute of Health Research (NIHR) through the Health Protection Research Unit (HPRU) in Evaluation of Interventions

NHS National Institute for Health Research