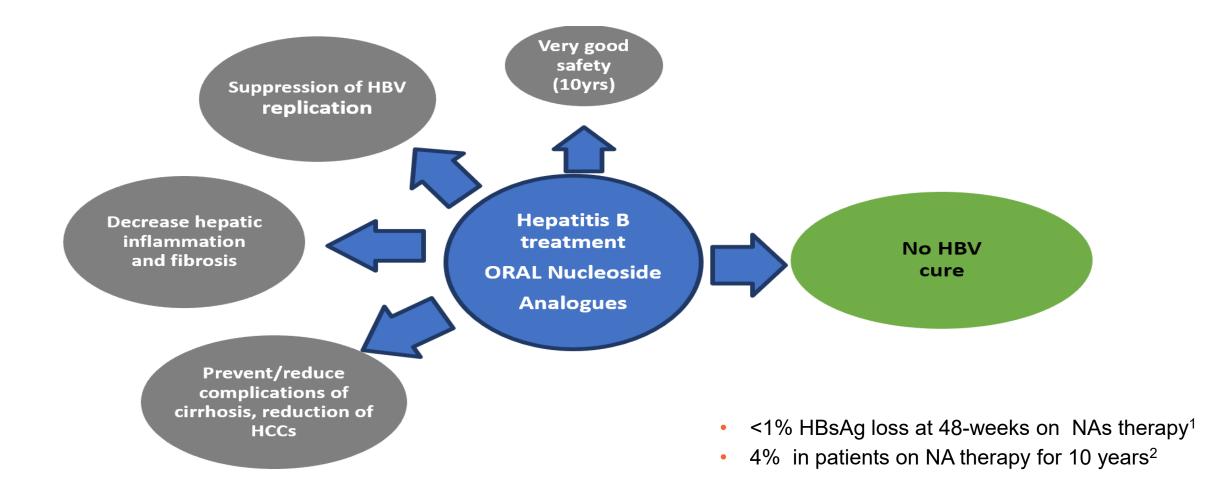


Rafael Esteban

Country: Spain

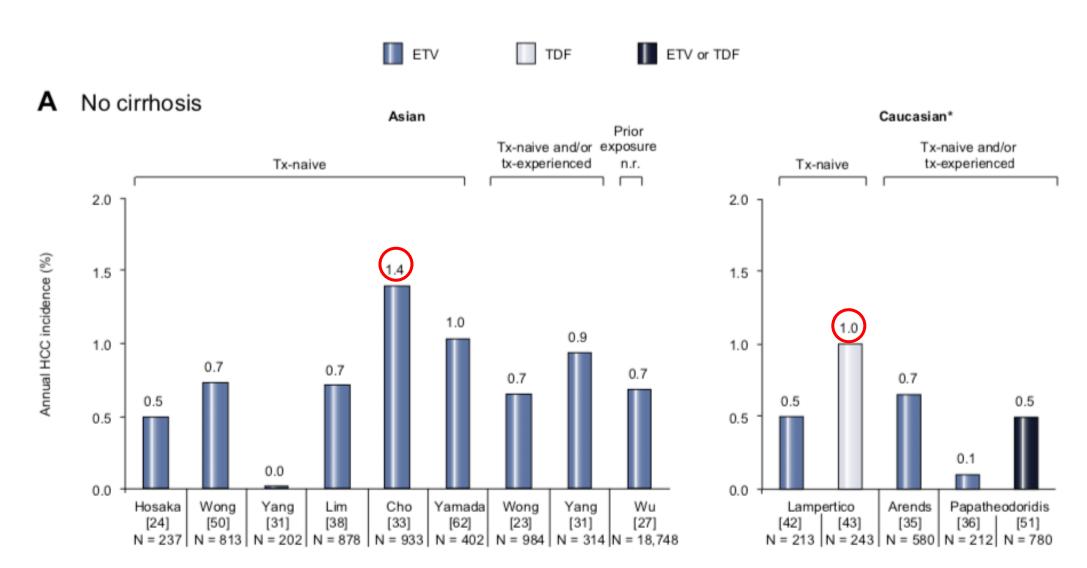
Affiliation: Institut Recerca Valle Hebron Function: Professor of Medicine

Main expertise: Viral Hepatitis B and C Liver Cancer


The risk of hepatocellular carcinoma decreases after NAs treatment in Caucasians with chronic hepatitis B: The Role of PAGE-B

Rafael Esteban MD

Institut de Recerca Vall de Hebron


Barcelona. Spain

Achievements with NAs in the Treatment of Hepatitis B

1. Marcellin P, et al. *Liver Int*. 2019;39(10):1868–1875; 2 Slaets L, et al. *Gastroenterol Hepatol*. 2020;2(3):106–116

Annual HCC Incidence Rates with ETV or TDF in Chronic Hepatitis B <u>Without</u> Cirrhosis

Reviewed by Papatheodoridis G et al J Hepatology 2015

Annual HCC Incidence Rates with ETV or TDF in Chronic Hepatitis B With Cirrhosis

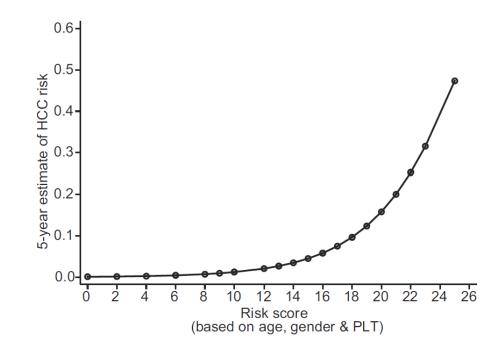
Papatheodoridis G et al J Hepatol 2015

Risk predicting scores of HCC development in CHB patients

Predicting scores	Predictors	5-year AUROC to predict HCC risk
PAGE-B ¹²²	Age, male, platelet	0.82
mPAGE-B ¹²³	Age, male, platelet, albumin	0.82
HCC-RESCUE ¹²⁴	Age, male, cirrhosis	0.77
APA-B ¹²⁵	Age, platelet, alpha-fetoprotein	0.827
CAMD ¹²⁶	Age, male, cirrhosis, diabetes	0.76
AASL-HCC ¹²⁷	Age, male, albumin, cirrhosis	0.802
REAL-B ¹²⁸	Age, male, alcohol use, diabetes, cirrhosis, platelet, alpha- fetoprotein	0.80

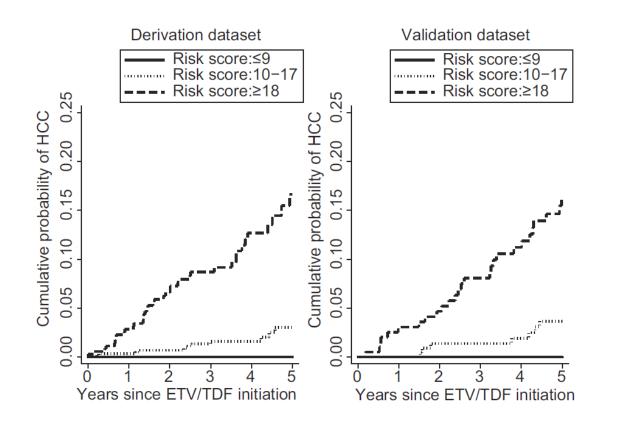
PAGE-B score is the only one developed in Caucasian patients

Lin CL. Clin Mol Hepatol. 2023



PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy

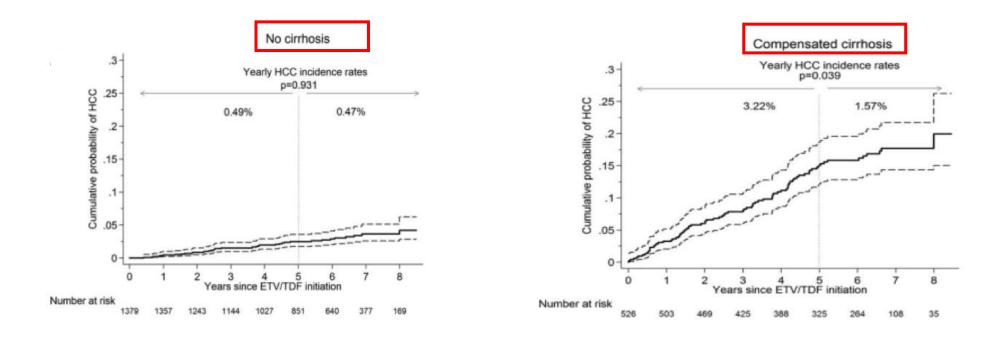
George Papatheodoridis^{1,2,*}, George Dalekos³, Vana Sypsa⁴, Cihan Yurdaydin⁵, Maria Buti⁶, John Goulis⁷, Jose Luis Calleja⁸, Heng Chi⁹, Spilios Manolakopoulos², Giampaolo Mangia¹⁰, Nikolaos Gatselis³, Onur Keskin⁵, Savvoula Savvidou⁷, Juan de la Revilla⁸, Bettina E. Hansen⁹, Ioannis Vlachogiannakos¹, Kostantinos Galanis³, Ramazan Idilman⁵, Massimo Colombo¹⁰, Rafael Esteban⁶, Harry L.A. Janssen^{9,11}, Pietro Lampertico¹⁰


1815 adult Caucasians with CHB no HCC at baseline ETV/TDF > 12 months derivation dataset, n = 1325) HCC risk score: Multivariable Cox models validation dataset, n = 490 Points based in Patients' Baseline Factors

	Age (years)	Gender	Platelets (/mm ³)
	16-29: 0	Female: 0	≥200,000: <mark>0</mark>
)	30-39: 2	Male: 6	100,000-199,999: 6
	40-49: 4		<100,000:9
	50-59: 6		
	60-69: 8		
	≥70: 10		

5-year cumulative HCC incidence rates were 5.7%

Cumulative probability of HCC in the derivation and validation dataset of patients treated with ETV or TDF according to their PAGE-B risk scores.

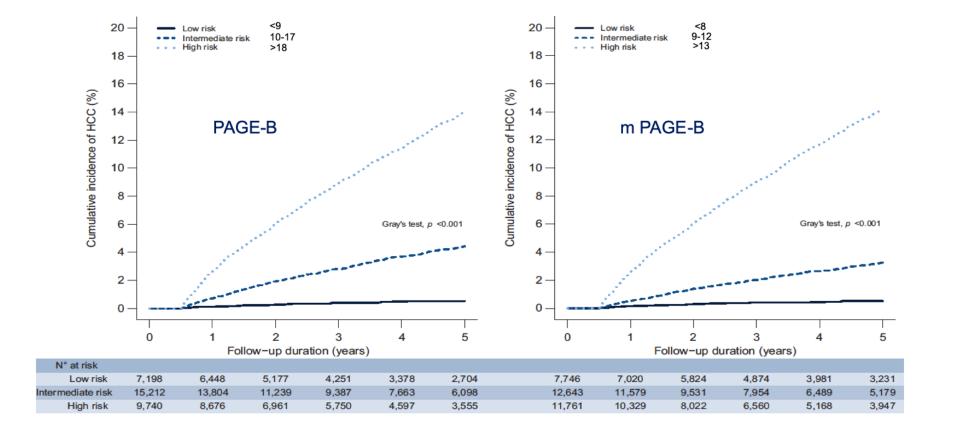

Accuracy for prediction of HCC within the first 5 years of NAs using the cut-off point of >10 in the PAGE-B risk score.

	PAGE-B ri	sk score >10
	Derivation cohort (N = 1264)	Validation cohort (N = 484)
Sensitivity	100%	100%
Specificity	41.2%	19.6%
Positive predictive value	9.8%	10.3%
Negative predictive value	100%	100%

PAGE-B represents a simple and reliable score for prediction of the 5-year HCC risk in Caucasian CHB patients under NAs

HCC Prevented Beyond Five Years of NA Therapy in Cirrhosis Only. PAGE-B Cohort

Cohort :10-centers,1,951 adult HCC-free Caucasians on ETV/TDF for > 1 year



➤ Late HCC predictors : older age (especially ≥50 years), lower platelets.

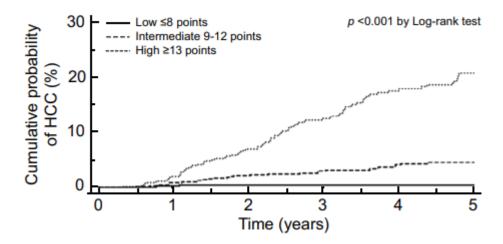
and liver stiffness ≥12 kPa at year 5

PAGE B Predicts HCC in Asians with NA Suppressed Chronic Hepatitis B. Hong Kong Study

With either one of the low risk scores 9,417 (29.3%) patients classified as low risk 43 (0.5%) developed HCC in 5 yrs

Surveillance in patients at high risk of HCC		
Recommendations	idence 📕 Grade d	of recommendation
 Cirrhotic patients, Child–Pugh stage A and B 	Low	Strong
 Cirrhotic patients, Child–Pugh stage C awaiting LT 	Low	Strong
 Non-cirrhotic HBV patients at intermediate or high risk of HCC* (according to PAGE-B⁺ classes for Caucasian subjects, respectively 10–17 and ≥18 score points) 	Low	Weak
 Non-cirrhotic F3 patients, based on an individual risk assessment 	Low	Weak
Role of surveillance for patients with NAFLD without cirrhosis is unclear	Lo	SM

*Patients at low HCC risk left untreated for HBV and without regular 6-month surveillance must be reassessed at latest on a yearly basis to verify progression of HCC risk. [†]PAGE-B score is based on decade of age (16–29 = 0, 30–39 = 2, 40–49 = 4, 50–59 = 6, 60–69 = 8, \geq 70=10), gender (M = 6, F = 0) and platelet count (\geq 200,000/µl = 0, 100,000–199,999µl = 1, <100,000 = 2): a total sum of ≤9 is considered at low risk of HCC (almost 0% HCC at 5 years) a score of 10–17 at intermediate risk (3% incidence HCC at 5 years) and \geq 18 is at high risk (17% HCC at 5 years) EASL CPG HCC. J Hepatol 2018; doi: 10.1016/j.jhep.2018.03.019


mPAGE-B score for Asian NAs treated patients

mPAGE-B

The simple formula of the modified PA	AGE-B score
---------------------------------------	-------------

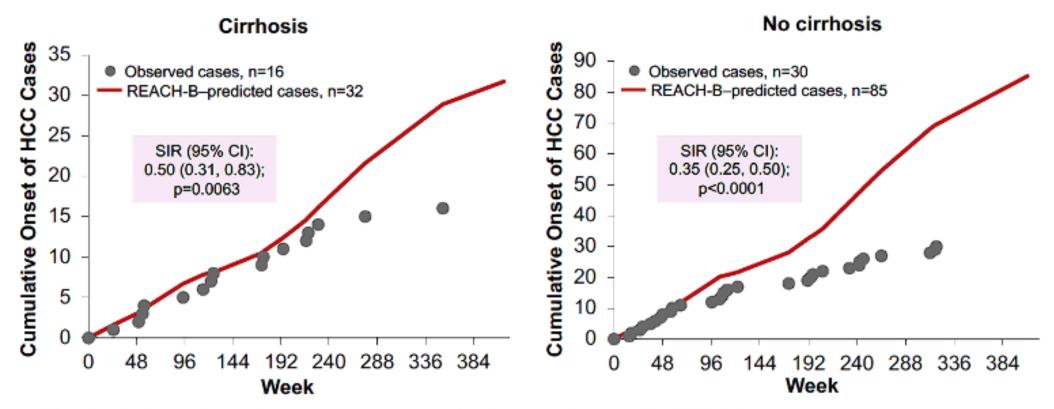
Age	Risk	Gender	Risk	Platelets	Risk	Albumin	Risk
(years)	score		score	(x10 ⁹ /L)	score	(g/dl)	score
<30	0	Female	0	>250	0	≥4.0	0
30-39	3	Male	2	200-250	2	3.5-4.0	1
40-49	5			150-200	3	3.0-3.5	2
50-59	7			100-150	4	<3.0	3
60-69	9			<100	5		
≥70	11						

The modified PAGE-B score stratifies the HCC risk in Asian patients with chronic hepatitis B under antiviral therapy

Table 4. Comparison of predictive performance for HCC development within five years.

Prediction model	Time-dependent AUROC (95% CI)
Modified PAGE-B	0.82 (0.76-0.88)
PAGE-B	0.72 (0.65-0.78)

Predictive performance of newer Asian HCC risk scores in treated Caucasians with CHB



HCC risk score	Low/High-risk group cut-off	AUROC, c-statistic (95% CI)	Sensitivity, %	NPV, %		
At baseline		5-year HCC prediction				
PAGE-B	10/18	0.80 (0.76, 0.83)	99.3%	99.8%		
HCC-Rescue	65/85	0.81 (0.78, 0.84)	97.2%	99.5%		
CAMD 8/14		0.79 (0.74, 0.83)	100%	100%		
mPAGE-B 9/13		0.82 (0.78, 0.85)	97.8%	99.3%		
AASL	6/20	0.81 (0.77, 0.84)	99.3%	99.7%		
At baseline		10-year l	HCC prediction			
PAGE-B	10/18	0.78 (0.75, 0.81)	99.3%	99.8%		
HCC-Rescue	65/85	0.81 (0.79, 0.84)	97.2%	99.5%		
CAMD	8/14	0.80 (0.76, 0.83)	100%	100%		
mPAGE-B 9/13		0.81 (0.78, 0.84)	97.8%	99.3%		
AASL	6/20	0.80 (0.77, 0.83)	99.3%	99.7%		

Papatheodoridis, G et al J Hepatol 2021

Can HCC risk scores applied to patients under treatment with Tenofovir Alafenanide?

Observed vs. Predicted HCC Cases by REACH-B Analysis over 8 Years,

SIR is Standardized Incidence Ratio of observed cases/predicted cases as determined by REACH-B. CI, confidence interval; HCC, hepatocellular carcinoma; REACH-B, Risk Estimation for Hepatocellular Carcinoma in Chronic Hepatitis B; SIR, standardized incidence ratio

Kim R et al. EASL 2024

Shifts in HCC Risk from Baseline to Year 8 (Week 384), Pooled Analysis Using mPAGE-B Model

			Baseline	
	n (%)ª	Low risk (n=1,251)	Medium risk (n=810)	High risk (n=208)
	Low risk	749 (97)	157 (26)	3 (2)
Year 8	Medium risk	26 (3)	427 (72)	69 (51)
	High risk	0	10 (2)	64 (47)
	Missing ^b , n 476		216	72

Most patients who were low- or medium-risk at baseline either remained at those risk categories or shifted to a lower risk group by Week 384.

Of the patients who were high-risk at baseline, most shifted to medium or low-risk by Week 384

Kim R et al. EASL 2024

EASL Recommendations for Surveillance in Nas Suppressed HBV

Patients under effective long-term NA therapy should remain under surveillance for HCC. (Evidence level II-2, grade of recommendation 1)

HCC surveillance is mandatory for all patients with cirrhosis as well as those with moderate or high HCC risk scores at the onset of NA therapy. (Evidence level II-2, grade of recommendation 1)

EASL CPG HBV J Hepatol 2017

Incidence of HCC in patients with a PAGE-B score > 10

Cohort ANRS C022 HEPATHER & SNDS, prospective follow up median 99 months (89-109)

1 935 patients with advanced fibrosis and a PAGE-B score < and > 10 or without advanced fibrosis and PAGE-B score > 10

	Group 1 Advanced Fibrosis PAGE-B < 10 (n = 76)	Group 2 Advanced Fibrosis PAGE-B ≥ 10 (n = 343)	Group 3 NO Advanced Fibrosis PAGE-B ≥ 10 (n = 1 516)	р
Hepatic Decompensation, n (%)	0 (0 %)	3 (0,9 %)	8 (0,5 %)	0,59
Liver Transplantation, n (%)	0 (0 %)	4 (1,2 %)	0 (%)	0,001
Death, n (%)	4 (5,3 %)	51 (14,9 %)	76 (5 %)	< 0,0001
HCC, n (%) Incidence /100 p-yr (IC 95%)	1 (1,3 %) 0,17 (0,00-0,96)	31 (9 %) 1,25 (0,85-1,77)	13 (0,9 %) 0,11 (0,06-0,19)	< 0,0001

Parlati L, , AASLD 2024,

HCC surveillance in clinical practice is suboptimal

Type of HCC Surveillance	Total n= 1 935	Group 1 AF & PAGE B < 10 n = 76	Group 2 AFF& PAGE-B ≥ 10 n = 343	Group 3 NO AF&AGE-B ≥ 10 n = 1 516	р
Every 6 monts (Su-R6)	31 (1,6 %)	2 (2,6 %)	14 (4,1 %)	15 (1 %)	< 0,0001
Every 12 monts (Su-R12)	389 (20,1 %)	19 (25 %)	141 (41,1 %)	229 (15,1 %)	
Irregular (Su-I)	1 432 (74 %)	51 (67,1 %)	183 (53,3 %)	1 198 (79 %)	
None (Su0)	83 (4,3 %)	4 (5,3 %)	5 (1,5 %)	74 (4,9 %)	

Frequency of Surveillance according to Page B Group

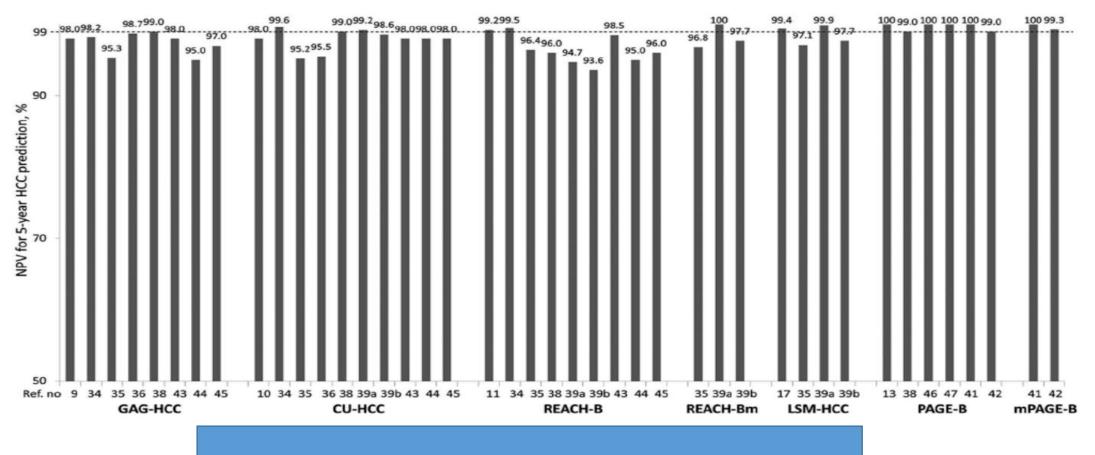
HCC detected by frequency of Surveillance

Therapy of HCC in function of Surveillance

	Overall (n = 1 852)	Every 6 mo (n = 31)	Every 12 mo (n = 389)	Irregular (n = 1 432)	HCC Therapy	Total (n = 45)	Every 6 mo (= 10)	Every 12 mo (n = 23)	Irregular (n = 12)	р
HCC, n (%)	45 (2,3 %)	10 (22,2 %)	23 (51,1 %)	12 (26,7 %)	Therapy, n (%) - Curative - Paliative	18 (54,6 %) 15 (45,5 %)	6 (66,7 %) 3 (33,3 %)	9 (56,3 %) 7 (43,8 %)	3 (37,5 %) 5 (62,5 %)	0,052
		73,	3 %					ve = 60 % ve = 40 %		

Parlati L, et al AASLD 2024,

Clinical utility of HCC risk scores in chronic hepatitis B


Should HCC Surveillance Be Relaxed in Treated Patients at Low Risk of HCC?

Should HCC Surveillance Be Enhanced in Patients at Higher Risk of HCC?

Can cirrhosis be safely excluded in all cases?

Should we mind of those co-morbidities that may promote liver disease progression?

Should HCC Surveillance Be Relaxed in Treated Patients at Low Risk of HCC?

NPV of the <u>low-risk cut-off</u> for 5-year prediction of HCC

Voulgaris T et al Liver Intern 2020

The risk of hepatocellular carcinoma decreases after long-termNAs treatment in Caucasians with chronic hepatitis B particularly in patients with Cirrhosis

PAGE-B represents a simple and reliable score for prediction of HCC risk in Caucasian CHB patients under NAs

Most patients who were low- or medium-risk at baseline by PAGE-B either remained at those risk categories or shifted to a lower risk group after 8 years of NAs therapy

Patients who were at low risk at baseline with PAGE-B score could HCC surveillance be relaxed

VIRAL HEPATITIS AND BEYOND

Directors:

Rafael ESTEBAN María BUTI

Liver Unit, Hospital Vall d´Hebron Barcelona (Spain) Sitges October 2025 **3rd & 4th**